สารพฤกษเคมี ฤทธิ์ต้านอนุมูลอิสระ ฤทธิ์ยับยั้งเอนไซม์ไทโรซิเนสของสารสกัดสมุนไพร และการพัฒนาโลชันบำรุงผิวจากสารสกัดมะขามป้อม

Main Article Content

เขมิกา เคียงณฟ้า มานอก
ชารินันท์ แจงกลาง
นิโลบล พุทธชื่น
ชวิศา วรัญญานนท์
ปิยะมาศ แก้วกลม

บทคัดย่อ

งานวิจัยนี้มีวัตถุประสงค์ในการพัฒนาผลิตภัณฑ์โลชันบำรุงผิวจากสารสกัดสมุนไพรไทยที่มีประสิทธิภาพในการยับยั้งเอนไซม์ไทโรซิเนสและสามารถต้านอนุมูลอิสระ โดยนำสมุนไพร 10 ชนิด ได้แก่ มะรุม อัญชัน บัวหลวง หม่อน แครอท ฟักทอง สมอไทย บัวบก ไชเท้า และมะขามป้อม มาสกัดสารโดยวิธีการแช่หมักด้วยเอทานอลร้อยละ 95 นำสารทั้งหมดมาศึกษาปริมาณสารพฤกษเคมี ฤทธิ์ต้านอนุมูลอิสระ และฤทธิ์ยับยั้งเอนไซม์ไทโรซิเนส พบว่า สารสกัดสมอไทยมีปริมาณฟีนอลิกรวมสูงที่สุด โดยมีปริมาณ 12,083.08 ± 232.18 มิลลิกรัมของกรดแกลลิกต่อ 100 มิลลิกรัมสารสกัด ในขณะที่สารสกัดอัญชันให้ปริมาณฟลาโวนอยด์รวมสูงสุดเท่ากับ 3,397.07 ± 41.01 มิลลิกรัมของเคอร์ซิตินต่อ 100 มิลลิกรัมสารสกัด และสารสกัดสมอไทยมีฤทธิ์ต้านอนุมูลอิสระสูงสุด โดยมีค่า IC50 เท่ากับ 10.229 ± 0.632 ไมโครกรัมต่อมิลลิลิตร เมื่อทดสอบด้วยวิธี 2,2-Diphenyl-1-picrylhydrazyl radicals (DPPH) อย่างไรก็ตาม สารสกัดมะขามป้อมสามารถต้านอนุมูลอิสระสูงสุดในการทดสอบฤทธิ์ต้านอนุมูลอิสระด้วยวิธี 2,2'-Azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) และFerric reducing antioxidant power (FRAP) โดยมีค่า IC50 เท่ากับ 41.426 ± 13.485 มิลลิโมลาร์ต่อมิลลิกรัม และ 27.440 ± 2.048 มิลลิโมลาร์ Fe2+ ต่อมิลลิกรัม ตามลำดับ ในการศึกษาฤทธิ์ยับยั้งเอนไซม์ไทโรซิเนสด้วยวิธี Dopachrome พบว่า สารสกัดใบหม่อนสามารถยับยั้งเอนไซม์ไทโรซิเนสได้สูงที่สุด รองลงมาคือ สารสกัดมะขามป้อม โดยมีค่า IC50 เท่ากับ 123.820 ± 4.671 และ 226.625 ± 13.737 ไมโครกรัมต่อมิลลิลิตร ตามลำดับ เมื่อนำสารสกัดมะขามป้อมมาพัฒนาเป็นผลิตภัณฑ์โลชันบำรุงผิว โดยทดสอบความคงตัวทางกายภาพและทางเคมีของผลิตภัณฑ์โลชันสูตรผสมสารสกัดมะขามป้อม (MKP) เปรียบเทียบกับตำรับโลชันสูตรควบคุม (C) และตำรับที่ผสมสารมาตรฐานกรดโคจิก (KJ) ในสภาวะสลับร้อนสลับเย็น จำนวน 7 รอบ พบว่า ผลิตภัณฑ์โลชันบำรุงผิวสูตร MKP และสูตร KJ สามารถต้านอนุมูลอิสระและยับยั้งเอนไซม์ไทโรซิเนสได้สูงกว่าสูตรควบคุม (C)  โดยโลชันสูตรผสมสารสกัดมะขามป้อมสามารถต้านอนุมูลอิสระได้สูงที่สุด ในทางกลับกัน โลชันสูตรผสมสารโคจิกนั้นสามารถยับยั้งเอนไซม์ไทโรซิเนสได้สูงกว่าตำรับที่ผสมสารสกัดมะขามป้อม

Article Details

รูปแบบการอ้างอิง
มานอก เ. . เ., แจงกลาง ช., พุทธชื่น น., วรัญญานนท์ ช., & แก้วกลม ป. (2025). สารพฤกษเคมี ฤทธิ์ต้านอนุมูลอิสระ ฤทธิ์ยับยั้งเอนไซม์ไทโรซิเนสของสารสกัดสมุนไพร และการพัฒนาโลชันบำรุงผิวจากสารสกัดมะขามป้อม. วารสารวิทยาศาสตร์ลาดกระบัง, 34(2), 16–40. สืบค้น จาก https://li01.tci-thaijo.org/index.php/science_kmitl/article/view/261494
ประเภทบทความ
บทความวิจัย

เอกสารอ้างอิง

Benzie, I. F. F., & Strain, J. J. (1996). The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Analytical Biochemistry, 239(1), 70-76. https://doi.org/10.1006/abio.1996.0292

Buachoon, N., Singsuk, N., Kanran, P., & Kaeoprasoet, S. (2018). Antioxidant activity of crude extract from Terminalia chebulia. VRU Research and Development Journal Science and Technology, 13(2), 98-107. https://so06.tci-thaijo.org/index.php/vrurdistjournal/article/view/143390 (in Thai)

Chang, L. W., Juang, L. J., Wang, B. S., Wang, M. Y., Tai, H. M., Hung, W. J., Chen, Y. J., & Huang, M-H. (2011). Antioxidant and antityrosinase activity of mulberry (Morus alba L.) twigs and root bark. Food and Chemical Technology, 49(4), 785-790. https://doi.org/10.1016/j.fct.2010.11.045

Chatatikun, M., & Chiabchalard, A. (2013). Phytochemical screening and free radical scavenging activities of orange baby carrot and carrot (Daucus carota Linn.) root crude extracts. Journal of Chemical and Pharmaceutical Research, 5(4), 97-102. https://www.jocpr.com/articles/phytochemical-screening-and-free-radical-scavenging-activities-of-orange-baby-carrot-and-carrot-daucus-carota-linn-root.pdf

Chaudhuri, R. K. (2002). Emblica cascading antioxidant: A novel natural skin care ingredient. Skin Pharmacology and Applied Skin Physiology, 15(5), 374-380. https://doi.org/10.1159/000064544

Chen, C., Mokhtar, R. A. M., Sani, M. S. A., & Noor, N. Q. I. M. (2022). The effect of maturity and extraction solvents on bioactive compounds and antioxidant activity of mulberry (Morus alba) fruits and leaves. Molecules, 27(8), Article 2406. https://doi.org/10.3390/molecules27082406

Fujii, T., Wakaizumi, M., Ikami, T., & Saito, M. (2008). Amla (Emblica officinalis Gaertn.) extract promotes procollagen production and inhibits matrix metalloproteinase-1 in human skin fibroblasts. Journal of Ethnopharmacology, 119(1), 53-57. https://doi.org/10.1016/j.jep.2008.05.039

Ghosal, S., Tripathi, V. K., & Chauhan, S. (1996). Active constituents of Emblica officinalis. Part 1. The chemistry and antioxidative effects of two new hydrolysable tannins, emblicanin A (Ia) and B (Ib). Indian Journal of Chemistry, 27(47), 941-948. https://doi.org/10.1002/chin.199647279

Halee, A., & Rattanapun, B. (2017). Study of antioxidant efficacies of 15 local herbs. King Mongkut's University of Technology Thonburi Research and Development Journal, 40(2), 283-293. (in Thai)

Halliwell, B., & Gutteridge, J. (2007). Free Radicals in Biology and Medicine (4th ed.). Oxford publishing, Oxford University Press.

Homklob, J., Winitcha, S., & Rimkeeree, H. (2010). Free radical scavenging capacity, tyrosinase inhibition activity and total phenolics content of ethyl acetate extracts from Indian gooseberry (Phyllanthus emblica L.) in Thailand. Proceedings of 48th Kasetsart University Annual Conference: Agro-Industry (pp. 91-99). Kasetsart University. https://kukr.lib.ku.ac.th/kukr_es/index.php?/BKN/search_detail/result/12131 (in Thai)

Jirumand, J., & Srihanam, P. (2011). Oxidants and antioxidants : sources and mechanism. Academic Kalasin Rajabhat University, 1(1), 59-70. (in Thai)

Kakatum, N., Jaiarree, N., Makchucit, S., & Itharat, A. (2012). Antioxidant and anti-inflammatory activities of Thai medicinal plants in sahasthara remedy for muscle pain treatment. Journal of the Medical Association of Thailand, 95(1), 120-126.

Kanyaprasit, W., & Butkhup, L. (2021). Optimization of microwave-assisted extraction of mulberry twigs (Morus alba Linn.) on antityrosinase and antioxidant potential using response surface methodology. Proceedings of the 8th International Conference on Food, Agriculture and Biotechnology (ICoFAB2021) (pp. 16-28). Mahasarakham University. https://doi.nrct.go.th/admin/doc/doc_591204.pdf

Kim, C. H., Hwang, B. S., Hwang, Y., Oh, Y. T., & Jeong, J. W. (2022). Evaluation of antioxidant and antiinflammatory activity of ethanolic extracts of Polygonum senticosum in lipopolysaccharide-induced RAW 264.7 macrophages. Journal of Laboratory Medicine, 46(1), 51-59. https://doi.org/10.1515/labmed-2021-0099

Kim, Y. J., & Uyama, H. (2005). Tyrosinase inhibitors from natural and synthetic sources: structure, inhibition mechanism and perspective for the future. Cellular and Molecular Life Sciences, 62, 1707-1723. https://doi.org/10.1007/s00018-005-5054-y

Leakaya, N., Hirunpanich Sato, V., & Chewchinda, S. (2018). Antioxidant activity, total phenolic, total flavonoid content and HPTLC analysis of morin in Maclura cochinchinensis heartwood extract. Thai Journal of Pharmaceutical Sciences, 42, 27-31. http://www.tjps.pharm.chula.ac.th/proceedings/backend/proceeding_file/7_PN_FP_Nantakarn%20Leakaya%20(27-31).pdf

Lee, K. J., Oh, Y. C., Cho, W. K., & Ma, J. Y. (2015). Antioxidant and anti-inflammatory activity determination of one hundred kinds of pure chemical compounds using offline and online screening HPLC assay. Evidence-Based Complementary and Alternative Medicine, 2015(1), Article 165457. https://doi.org/10.1155/2015/165457

Lee, T. H., Seo, J. O., Baek, S. H., & Kim, S. Y. (2014). Inhibitory effects of resveratrol on melanin synthesis in ultraviolet B-induced pigmentation in guinea pig skin. Biomolecules & Therapeutics, 22(1), 35-40. https://doi.org/10.4062/biomolther.2013.081

Lin, J. W., Chiang, H. M., Lin, Y. C., & Wen, K. C. (2008). Natural products with skin - whitening effects. Journal of Food and Drug Analysis, 16(2), Article 8. https://doi.org/10.38212/2224-6614.2366.

Long, Z. P., Park, H. R., Park, Y. K., Lee, S. K., Park, J. H., & Park, M. K. (2002). Mushroom tyrosinase inhibition activity of some chromones. Chemical and Pharmaceutical Bulletin, 50(3), 309-311. https://doi.org/10.1248/cpb.50.309

Manok, S., & Limcharoen, P. (2015). Investigating antioxidant activity by DPPH, ABTS and FRAP assay and total phenolic compounds of herbal extracts in ya-hom thepphachit. Advanced Science, 15(1), 106-117. (in Thai)

Mokkhasmit, M., Swatdimongkol, K., & Satrawaha, P. (1971). Study on toxicity of Thai medicinal plants. The Bulletin of the Department of Medical Sciences, 12(2), 36-65.

Nemes, A., Szóllósi, E., Stündl, L., Biró, A., Homoki, J. R., Szarvas, M. M., Balogh, P., Cziáky, Z., & Remenyik, J. (2018). Determination of flavonoid and proanthocyanidin profile of Hungarian sour cherry. Molecules, 23, Article 3278. https://doi.org/10.3390/molecules23123278

Pancoke, J., Kerdchoechuen, O., & Laohakunjit, N. (2012). Antioxidant capacity and total phenolics of some Thai medicinal plant extracts. Agricultural Science Journal, 43(2), 361-364.

Perera, H. K. I., Pradeep, A. P. C., Devinda, K. D. U., Ratnayake, R. M. U. K., Gunawardhana, D. K. L. R., & Jayasinghe, J. A. V. P. (2018). Antityrosinase activities of Thespesia populnea bark and Phyllanthus emblica fruit. Journal of Advances in Medical and Pharmaceutical Sciences, 16(3), 1-8. https://doi.org/10.9734/JAMPS/2018/40775

Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine, 26(9-10), 1231-1237. https://doi.org/10.1016/s0891-5849(98)00315-3

Saha, S., & Verma, R. J. (2016). Antioxidant activity of polyphenolic extract of Terminalia chebula retzius fruits. Journal of Taibah University for Science, 10(6), 805-812. https://doi.org/10.1016/j.jtusci.2014.09.003

Sithisarn, P., Rojsanga, P., Sithisarn, P., & Kongkiatpaiboon, S. (2015). Antioxidant activity and antibacterial effects on clinical isolated Streptococcus suis and Staphylococcus intermedius of extracts from several parts of Cladogynos orientalis and their phytochemical screenings. Evidence-Based Complementary and Alternative Medicine, 2015, Article 908242. https://doi.org/10.1155/2015/908242

Solano, F., Briganti, S., Picardo, M., & Ghanem, G. (2006). Hypopigmenting agents: An updated review on biological, chemical and clinical aspects. Pigment Cell Research, 19(6), 550-571. https://doi.org/10.1111/j.1600-0749.2006.00334.x

Sungthong, B., & Phadungkit, M. (2015). Anti-tyrosinase and DPPH radical scavenging activities of selected Thai herbal extracts traditionally used as skin toner. Pharmacognosy Journal, 7(2), 97-101. https://doi.org/10.5530/pj.2015.2.3

Wongthai, N., Tanticharakunsiri, W., Mangmool, S., & Ochaikul, D. (2021). Characteristics and antioxidant activity of royal kotus pollen, butterfly pea flower, and oolong tea kombucha beverages. Asia-Pacific Journal of Science and Technology, 26(4), 1-11. https://doi.org/10.14456/apst.2021.47

Xiaoxia, L. (2008). In vitro antioxidant activity of the ethanol extract of Cucurbita moschata D. (pumpkin). Natural Product Research and Development, 20(2), 245-250.

Xu, Y. B., Chen, G. L., & Guo, M. Q. (2019). Antioxidant and anti-inflammatory activities of the crude extracts of Moringa oleifera from Kenya and their correlations with flavonoids. Antioxidants (Basel), 8(8), Article 296. https://doi.org/10.3390/antiox8080296

Yahya, M. A., & Nurrosyidah, I. H. (2020). Antioxidant activity ethanol extract of gotu kola (Centella asiatica (L.) Urban) with DPPH method (2,2-diphenyl-1-pikrilhidrazil). Journal of Halal Product and Research, 3(2), 106-112. https://doi.org/10.20473/jhpr.vol.3-issue.2.106-112

Yodthong, W., Chaiwongsar, S., Wanachantararak, P., Keereeta, Y., Panthuwat, W., Saovapha, B., & Sassa-deepaeng, T. (2020). Influence of different extraction solvents on antioxidant and antityrosinase activities of Morus alba Linn. leaf extract. Journal of Science and Agricultural Technology, 1(1), 7-17. https://doi.org/10.14456/jsat.2020.2

Zhang, J., Miao, D., Zhu, W. F., Xu, J., Liu, W. Y., Kitdamrongtham, W., Manosroi, J., Abe, M., Akihisa, T., & Feng, F. (2017). Biological activities of phenolics from the fruits of Phyllanthus emblica L. (Euphorbiaceae). Chemistry & Biodiversity, 14(12), Article e1700404. https://doi.org/10.1002/cbdv.201700404

Zhang, L., Tao, G., Chen, J., & Zheng, Z.-P. (2016). Characterization of a new flavone and tyrosinase inhibition constituents from the twigs of Morus alba L. Molecules, 21(9), Article 1130. https://doi.org/10.3390/molecules21091130