อโครมาติกอินเด็กซ์ของยูนิทารีแอดดิชันเคย์เลย์กราฟ
Main Article Content
บทคัดย่อ
สำหรับจำนวนเต็มบวก n >1 ยูนิทารีแอดดิชันเคย์เลย์กราฟ Gn = Cay+ (Zn ,Un) คือกราฟที่มี Zn เซตของจุดยอด และถ้าให้ Un = {a E Zn : gcd(a,n) = 1} , Zn เป็นจำนวนเต็มมอดูโล n แล้วจุดยอด a,b ประชิดกันก็ต่อเมื่อ a+b E Un ในงานวิจัยนี้ผู้วิจัยได้ศึกษายูนิทารีแอดดิชันเคย์เลย์กราฟ Gn = Cay+ (Zn ,Un) และหาขอบเขตล่างกับขอบเขตบนของอโครติกอินเด็กซ์ของยูนิทารีแอดดิชันเคย์กราฟ เมื่อ n เป็นจำนวนเต็มคู่ อีกทั้งได้พัฒนาขอบเขตของอโครมาติกอินเด็กซ์ของกราฟ Gn เมื่อ n=2k โดยที่ k เป็นจำนวนนับ นอกจากนี้ผู้วิจัยได้พบว่ายูนิทารีแอดดิชันเคย์เลย์กราฟ Gn เป็นกราฟ1 สองส่วนบริบูรณ์ K2k-1,2k-1 เมื่อ n=2k
Article Details

อนุญาตภายใต้เงื่อนไข Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
เอกสารอ้างอิง
ภูวนาท ไชยนุรักษ์. 2561. จำนวนอโครมาติกของกราฟพิเศษบางชนิด. วิทยานิพนธ์วิทยาศาสตรมหาบัณฑิต, สาขาวิชาการสอนคณิตศาสตร์, บัณฑิตวิทยาลัย มหาวิทยาลัยเชียงใหม่. [Phuwanat Chainurak. 2018. Achromatic Numbers of Some Special Graphs. Master of Science Thesis, Mathematics Teaching Program, Graduate School, Chiang Mai University. (in Thai)]
นิตยา ชิงชัย. 2527. ทฏษฎีกราฟเบื้องต้น. พิมพ์ครั้งที่ 1, ภาควิชาคณิตศาสตร์ คณะวิทยาศาสตร์ มหาวิทยาลัยเชียงใหม่. [Nittaya Chingchai. 1984. Introduction of Graph Theory. 1st ed., Department of Mathematics, Faculty of Science, Chiang Mai University. (in Thai)]
วรานุช แขมมณี. 2559. ทฤษฎีกราฟเบื้องต้น. พิมพ์ครั้งที่ 1. สำนักพิมพ์แห่งจุฬาลงกรณ์มหาวิทยาลัย, กรุงเทพฯ. [Varanoot Khemmani. 2016. Introduction to Graph Theory. 1st ed., Chulalongkorn University Press, Bangkok. (in Thai)]
Guthrie, F. 1880. Note on the Colouring of Maps. Proceedings of the Royal Society of Edinburgh, 10, 727-728, https://doi:10.1017/S0370164600044631.
Cayley, P. 1879. On the Colouring of Maps. Proceedings of the Royal Geographical Society and Monthly Record of Geography, 1(4), 259–261, https://doi.org/10.2307/1799998.
Appel, K. I. and Haken, W. 1977. The solution of the Four-Color-Map problem. Scientific American, 237(4), 108–121.
Vizing, V.G. 1965. The chromatic class of a multigraph. Cybernetics, 1(3), 32-41, https://doi.org/10.1007/bf01885700.
Beineke, L.W. and Wilson, R. 1973. On the edge-chromatic number of a graph. Discrete Mathematics, 5(1), 15-20, https://doi.org/10.1016/0012-365x(73)90023-x.
Harary, F., Hedetniemi, S. and Prins, G. 1967. An interpolation theorem for graphical homomorphisms. Portugaliae mathematica, 26(4), 453-462.
Cayley. 1878. Desiderata and Suggestions: No. 2. The Theory of Groups: Graphical Representation. American Journal of Mathematics, 1(2), 174, https://doi.org/10.2307/2369306.
Klotz, W. and Sander, T. 2007. Some properties of unitary Cayley graphs. The Electronic Journal of Combinatorics, 14(1), https://doi.org/10.37236/963.
Sinha, D., Garg, P. and Singh, A. 2011. Some Properties of Unitary Addition Cayley Graphs. Notes on Number Theory and Discrete Mathematics, 17(3), 49-59.
Momrit, P. and Promsakon, C. 2017. The achromatic number of unitary addition Cayley graphs. The proceedings of 22nd Annual Meeting in Mathematics (AMM 2017), Department of Mathematics, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand, GRA-OR-1-GRA-02-9.
Douglas B. West. 2001. Introduction to graph theory. 2nd ed., Prentice Hall.
อัจฉรา หาญชูวงศ์. 2542. ทฤษฎีบทจำนวน. พิมพ์ครั้งที่ 1, สำนักพิมพ์จุฬาลงกรณ์มหาวิทยาลัย, กรุงเทพฯ. [Ajchara Harnchoowong. 1999. Theory of Number. 1st ed., Chulalongkorn University Press, Bangkok. (in Thai)]
เกียรติสุดา นาคประสิทธิ์. 2555. การระบายสีแบบเท่าเทียมในกราฟ. วารสารวิทยาศาสตร์บูรพา, 17(1), 150-156. [Keaitsuda Nakprasit. 2012. Equitable Colorings in Graphs. Burapha Science Journal, 17(1), 150-156. (in Thai)]
Hoffman, A.J. 1964. On the Line Graph of the Complete Bipartite Graph. Annals of Mathematical Statistics, 35(2), 883-885, https://doi.org/10.1214/aoms/1177703593.
Chiang, N.P. and Fu, H.L. 1995. The achromatic indices of the regular complete multipartite graphs. Discrete Mathematics, 141(1-3), 61-66, https://doi.org/10.1016/0012-365x(93)e0207-k.
Chiang, N.P. and Fu, H.L. 1992. On the achromatic number of the Cartesian product G_1×G_2. Australasian Journal of Combinatorics, 6, 111-117.