Analysis of Hotel Guest Reviews Using Latent Topic Analysis: A Case Study of Surin Province
Main Article Content
Abstract
This research presents a latent topic analysis of hotel guest reviews in Surin Province using data science techniques. The study aims to: (1) analyze latent topics in hotel guest reviews and
(2) examine the relationship between identified topics and guest sentiment levels from a user perspective. The research followed a five-step data science methodology: (1) data collection,
(2) data pre-processing, (3) sentiment level dataset creation, (4) latent topic modeling, and
(5) analyzing relationships between latent topics and sentiment levels.
The research utilized guest reviews from 15 hotels in Surin Province, collected from Google Map, comprising 2,042 reviews. Key findings reveal: 1) Reviews were categorized into 7 optimal latent topics with a coherence score of 0.449, including: (a) Leisure & Environment, (b) Service Quality and Cleanliness, (c) Luxurious Experience, (d) Hotel Renovation Charm, (e) Peaceful and Suitable, (f) Hotel Character and Venue, and (g) Affordable and Practical. 2) Sentiment analysis showed that guests expressed 23.60% positive sentiments, particularly regarding service quality and cleanliness, while 30.89% of reviews contained negative sentiments, primarily concerning hotel renovation charm.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
บทความที่ได้รับการตีพิมพ์เป็นลิขสิทธิ์ของ PBRU Science Journal
References
กระทรวงการท่องเที่ยวและกีฬา. สถานการณ์การท่องเที่ยวในประเทศ รายจังหวัด ปี 2566 [อินเทอร์เน็ต]. 2566 [เข้าถึงเมื่อ 12 ก.ค. 2567], เข้าถึงได้จาก: https://www.mots.go.th/news/category/705
Sultana S, Rahman MM, Rahman MA, Islam MM, Sultana S, Rahman MM, et al. A Latent Dirichlet Allocation Technique for Opinion Mining of Online Reviews of Global Chain Hotels. 2022 International Conference on Innovation and Intelligence for Informatics, Computing, and Technologies (3ICT). 2022.
Valdez D, Pickett AC, Goodson P. Topic modeling: latent semantic analysis for the social sciences. Soc Sci Q. 2018;99:1665-79
Parasuraman A, Zeithaml V, Berry L. SERVQUAL: a multiple-item scale for measuring consumer perceptions of service quality. J Retailing 1988;64:12-40.
ลิขิตา เฉลิมพลโยธิน. ปัจจัยที่มีอิทธิพลต่อคุณภาพบริการของโรงแรมในอำเภอหัวหิน. วารสารวิทยาลัยโลจิสติกส์และซัพพลายเชน. 2566;9:106-21.
Chauhan U, Shah A. Topic modeling using latent dirichlet allocation: a survey. ACM Comput Surv 2021;54:1-35.
Alghamdi R, Alfalqi K. A survey of topic modeling in text mining. Int J Adv Comput Sci Appl 2015;6:147-53.
Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: machine learning in Python. J Mach Learn Res 2011. [cited 2024 Jul 20]. Available from: https://scikit-learn.org/0.16/about.html#citing-scikit-learn
สำนักอนามัยสิ่งแวดล้อม กรมอนามัย กระทรวงสาธารณสุข. รายชื่อโรงแรมที่เป็นมิตรกับสุขภาพและสิ่งแวดล้อม [อินเทอร์เน็ต]. 2567 [เข้าถึงเมื่อ 12 ก.ค. 2567]. เข้าถึงได้จาก: https://ghh.anamai.moph.go.th/
Google Maps Platform. Google place API [Internet]. 2024 [cited 2024 Jul 20]. Available from: https://developers.google.com/
maps-/documentation/places/web-service/details#PlaceReview
Kumar K. Evaluation of topic modeling: topic coherence [Internet]. 2018 [cited 2024 Jul 25]. Available from: https://datascienceplus.com-/evaluation-of-topic-modeling-topic-coherence.
Zeithaml VA, Bitner MJ, Gremler DD. Services marketing: integrating customer focus across the firm. 5th ed. Singapore: McGraw-Hill and Irwin; 2009.
Nunkoo R, Teeroovengadum V, Ringle CM, Sunnassee V. Service quality and customer satisfaction: the moderating effects of hotel star rating. Int J Hosp Manag 2020;91:102414.