Nitrogen-fixing Bacteria and Trends in Agricultural Applications


  • Junjarus Sermsathanaswadi Department of Chemical Technology, Faculty of Science and Technology, Suan Dusit University


Agriculture, Nitrogen-fixing Bacteria, Non-symbiotic, Symbiotic


Bacteria that can increase the number of nutrients in the soil are important to plants, especially nitrogen-fixing bacteria that fix atmospheric nitrogen and change into the form that plants can use. In recent years, the use of nitrogen-fixing bacteria in agriculture has received a lot of attention because it offers an economically attractive and environmentally friendly method. Many species of nitrogen-fixing bacteria, symbiotic and non-symbiotic, that promote plant growth are used on a regular basis in order to improve crop yields. In addition to agricultural benefits, there are also potential benefits for environmental applications. Many nitrogenfixing bacteria which grow and multiply within plant tissues are called endophytes. They illustrate the tight association with the plant tissues without causing damage. Therefore, different types of endophytes which produce plant growth hormone provide benefit for many plants.


Download data is not yet available.


Arencibia, A.D., Vinagre, F., Estevez, Y., Bernal, A., Perez, J., Cavalcanti, J., & Hemerly, A.S. (2006). Gluconacetobacter diazotrophicus elicits a sugarcane defense response against a pathogenic bacteria Xanthomonas albilineans. Plant Signaling and Behavior, 1(5), 265-273.

Audipudi, A.V., Chakicherla, B.V., & Bhore, S.J. (2017). Biotechnology for Sustainability. Malaysia: AIMST University.

Azevedo, J.L., Maccheroni, J.J., Pe-reira, O., & Ara, W.L. (2000). Endophytic microorganisms: A review on insect control and recent advances on tropical plants. Electronic Journal of Biotechnology, 3, 40-65.

Babourina, O., Voltchanskii, K., McGann, B., Newman, I., & Rengel, Z. (2007). Nitrate supply affects ammonium transport in canola roots. Journal of Experimental Botany, 58, 651-658.

Beijerinck, M.W. (1901). Über oligonitrophile mikroben. Zentralblatt für Bakteriologie, 7, 561-582.

Benson, D.R., & Silvester, W.B. (1993). Biology of Frankia strains, actinomycete symbionts of actinorhizal plants. Microbiological Reviews, 57, 293-319.

Berg, G., Krechel, A., Ditz, M., Si-kora, R.A., Ulrich, A., & Hallmann, J. (2005). Endophytic and ectophytic potato associated bacterial communities differ in structure and antagonistic function against plant pathogenic fungi. FEMS Microbiology Ecology, 51, 215-229.

Bertsova, Y.U., Bogachev, A.V., & Skulachev, V.P. (2001). Noncoupled NADH: ubiquinone oxidoreductase of Azotobacter vinelandii is required for diazotrophic growth at high oxygen concentrations. Journal of Bacteriology, 183, 6869-6874.

Brandl M.T. (2006). Fitness of human enteric pathogens on plants and implications for food safety. Annual Review of Phytopathology, 44, 367-392.

Burgmann, H., Widmer, F., Von Sigler, W., & Zeyer, J. (2004). New molecular screening tools for analysis of free-living diazotrophs in soil. Applied and Environmental Microbiology, 70, 240-247.

Conn, V.M., & Franco, C.M. (2004). Analysis of the endophytic actinobacterial population in the roots of wheat (Triticum aestivum L.) by terminal restriction fragment length polymorphism and sequencing of 16S rRNA clones. Applied Environmental Microbiology, 70(3), 1787-1794.

Dhevendaran, K., Preetha, G., & Hari, B.N.V. (2013). Studies on nitrogen fixing bacteria and their application on the growth of seedling of Ocimum sanctum. Pharmacognosy Journal, 5(2), 60-65.

Döbereiner J. (1961). Nitrogen fixing bacteria of the genus Beijerinckia Drex. in the rhizosphere of sugarcane. Plant and Soil, 15(3), 211-216.

Döbereiner, J., & Pedrosa, O.F. (1987). Nitrogen-fixing bacteria in non-leguminous crop plants. Madison: Science Tech Publishers.

Franche, C., Lindstrom, K., & Elmerich, C. (2009). Nitrogenfixing bacteria associated with leguminous and non-leguminous plants. Plant and Soil, 321, 35-59.

Graham, P.H., & Vance, C.P. (2000). Nitrogen fixation in perspective: an overview of research and extension needs. Field Crops Research, 65, 93-106.

Gupta, G., Panwar, J., & Jha, P.N. (2013). Natural occurrence of Pseudomonas aeruginosa, a dominant cultivable diazotrophic endophytic bacterium colonizing Pennisetum glaucum (L.) R. Br. Applied Soil Ecology, 64, 252-261.

Haidar, B., Ferdous, M., Fatema, B., Ferdous, A.S., Islam, M.R., & Khan H. (2018). Population diversity of bacterial endophytes from jute (Corchorus olitorius) and evaluation of their potential role as bioinoculants. Microbiological Research, 208, 43-53.

Hallmann, J., Quadt-Hallmann, A., Rodriguez-Kabana, R., & Kloepper, J.W. (1998). Interactions between Meloidogyne incognita and endophytic bacteria in cotton and cucumber. Soil Biology and Biochemistry, 30, 925-937.

Holden, N., Pritchard, L., & Toth, I. (2009). Colonization out with the colon: plants as an alternative environmental reservoir for human pathogenic enterobacteria. FEMS Microbiology Reviews, 33(4), 689-703

Howden, S.M., Soussana, J.F., Tubiello, F.N., Chhetri, N., Dunlop, M., & Meinke, H. (2007). Adapting agriculture to climate change. Proceedings of the National Academy of Sciences of the United States of America, 104, 19691-19696.

Igarashi, R.Y., & Seefeldt, L.C. (2003). Nitrogen fixation: the mechanism of the Mo-dependent nitrogenase. Critical Reviews in Biochemistry and Molecular Biology, 38, 351-384.

Ji, S.H., Gururani, M.A., & Chun, S.C. (2014). Isolation and characterization of plant growth promoting endophytic diazotrophic bacteria from Korean rice cultivars. Microbiological Research ,169(1), 83-98.

Johnson, L.J., de Bonth, A.C., Briggs, L.R., Caradus, J.R., Finch, S.C., Fleetwood, D.J., ... & Tapper, B.A. (2013). The exploitation of epichloae endophytes for agricultural benefit. Fungal Diversity, 60(1), 171-188.

Koomnok, C., Teaumroong, N., Benjavan Rerkasem, B., & Lumyong S. (2007). Diazotroph endophytic bacteria in cultivated and wild rice in Thailand. Science Asia, 33, 429-435.

Lam, H.M., Coschigano, K.T., Oliveira, I.C., Melo-Oliveira, R., & Coruzzi, G.M. (1996). The molecular-genetics of nitrogen assimilation into amino acids in higher plants. Annual Review of Plant Physiology and Plant Molecular Biology, 47, 569-593.

Lee, S., Flores-Encarnacion, M., Con-treras-Zentella, M., Garcia-Flores, L., Escamilla, J.E., & Kennedy, C. (2004). Indole-3-acetic acid biosynthesis is deficient in Gluconacetobacter diazotrophicus strains with mutations in cytochrome C biogenesis genes. Journal of Bacteriology, 186, 5384-5391.

Marag, P.S., & Suman, A. (2018). Growth stage and tissue specific colonization of endophytic bacteria having plant growth promoting traits in hybrid and composite maize (Zea mays L.). Microbiology Research, 214, 101-113.

Masson-Boivin, C., Giraud, E., Perret, X., & Batut, J. (2009). Establishing nitrogen-fixing symbiosis with legumes: how many recipes. Trends in Microbiology, 17, 458-466.

Morrison, C.N., Spatzal, T., & Rees, D.C. (2017). Reversible protonated resting state of the nitrogenase active site. Journal of the American Chemical Society, 139(31), 10856-10862.

Muangthong, A., Youpensuk, S., & Rerkasem, B. (2015). Isolation and characterisation of endophytic nitrogen fixing bacteria in sugarcane. Tropical Life Sciences Research, 26(1), 41-51.

Mylona, P., Pawlowski, K., & Bisseling, T. (1995). Symbiotic nitrogen fixation. Plant Cell, 7(7), 869-885.

O'Callaghan, M. (2016). Microbial inoculation of seed for improved crop performance: issues and opportunities. Applied Microbiology and Biotechnology, 100, 5729-5746.

Okasaki, S., Nukui, N., Sugawara, M., & Minamisawa, K. (2004). Rhizobial strategies to enhance symbiotic interactions: rhizobiotoxine and 1-aminocyclopropane- 1-carboxylate deaminase. Microbes and Environments, 19, 99-111

Pampulha, M.E., & Oliveira, A. (2006). Impact of an herbicide combination of bromoxynil and prosulfuron on soil microorganisms. Current Microbiology, 53, 238-243.

Passari, A.K., Mishra, V.K., Leo, V.V., Gupta, V.K., & Singh, B.P. (2016). Phytohormone production endowed with antagonistic potential and plant growth promoting abilities of culturable endophytic bacteria isolated from Clerodendrum colebrookianum Walp. Microbiological Research, 193, 57-73.

Pedraza, R.O. (2008). Recent advances in nitrogen-fixing acetic acid bacteria. International Journal of Food Microbiology, 125, 25-35.

Postgate, J.R. (1982). The fundamentals of nitrogen fixation (2nd ed.). New York: Cambridge University Press.

Prakamhang, J., Minamisawa, K., Teamtaisong, K., Boonkerd, N., & Teaumroong, N. (2009). The communities of endophytic diazotrophic bacteria in cultivated rice (Oryza sativa L.). Applied Soil Ecology, 42(2), 141-149.

Puri, A., Padda, K.P., & Chanway, C.P. (2017, December 20). Nitrogen-fixation by endophytic bacteria in agricultural crops: Recent advances, nitrogen in agriculture - updates, amanullah and shah fahad. Retrieved from

Raweekul, W., Wuttitummaporn, S., Sodchuen, W., & Kittiwongwattana, C. (2016). Plant growth promotion by endophytic bacteria isolated from rice (Oryza sativa). Thammasat International Journal of Science and Technology, 21(1), 6-17.

Ruan, J.Y., Gerendas, J.S., Hardter, R. & Sattelmacher, B. (2007). Effect of nitrogen form and root zone pH on growth and nitrogen uptake of tea (Camellia sinensis) plants. Annals of Botany, 99, 301–310.

Ruinen, J. (1956). Occurrence of Beijerinckia species in the phyllosphere. Nature, 178 (4501), 220-221.

Santi, C., Bogusz, D., & Franche, C. (2013). Biological nitrogen fixation in non-legume plants. Annals of Botany, 111, 743-767.

Somasegaran, P. (1994). Handbook for rhizobia: methods in legume-rhizobium technology. New York: SpringerVerlag.

Sprent, J.I. (2007). Evolving ideas of legume evolution and diversity: a taxonomic perspective on the occurrence of nodulation. New Phytologist, 174, 11-25.

Szilagyi-Zecchin, V.J., Ikeda, A.C., Hungria, M., Adamoski, D., Kava-Cordeiro, V., Glienke, C., & Galli-Terasawa, L.V. (2014). Identification and characterization of endophytic bacteria from corn (Zea mays L.) roots with biotechnological potential in agriculture. AMB Express, 4, 26.

Thuler, D.S., Floh, E.L., Handro, W., & Barbosa, H.R. (2003). Beijerinckia derxii releases plant growth regulators and amino acids in synthetic media independent of nitrogenase activity. Journal of Applied Microbiology, 95(4), 799-806.

Udvarte, M., & Poole, P.S. (2013). Transport and metabolism in legume-rhizobia symbioses. Annual Review of Plant Biology, 64, 781-805.

Zehr, J.P., Jenkins, B.D., Short, S.M., & Steward, G.F. (2003). Nitrogenase gene diversity and microbial community structure: a cross-system comparison. Applied and Environmental Microbiology, 5, 539-554.

Zhan, J., & Sun, Q. (2012). Diversity of free-living nitrogen-fixing microorganisms in the rhizosphere and non-rhizosphere of pioneer plants growing on wastelands of copper mine tailings. Microbiological Research, 167(3), 157-165.




How to Cite

Sermsathanaswadi, J. (2023). Nitrogen-fixing Bacteria and Trends in Agricultural Applications. Journal of Food Health and Bioenvironmental Science, 12(2), 49–56. Retrieved from



Review Articles