Antioxidant Activities, Total Phenolic Compounds and Fucoxanthin of Marine Benthic Diatoms Amphora subtropica BUUC1502 and Thalassiosira sp.


  • Pakawan Setthamongkol Faculty of Marine Technology, Burapha University Chanthaburi Campus
  • Nisa Siranonthana Institute of Marine Science, Burapha University
  • Ranchayanee Chalermmueang Faculty of Marine Technology, Burapha University Chanthaburi Campus
  • Yutthaya Yuyen Faculty of Science and Technology, Suan Dusit University
  • Janjarus Watanachote Institute of Marine Science, Burapha University
  • Rachanimuk Hiransuchalert Faculty of Marine Technology, Burapha University Chanthaburi Campus
  • Maliwan Kutako Faculty of Marine Technology, Burapha University Chanthaburi Campus


Benthic diatom, Antioxidant activity, Total phenolic compounds, Fucoxanthin


This research’s aim was to study antioxidant activities, total phenolic compounds and fucoxanthin of crude extract of marine benthic diatoms, Amphora subtropica BUUC1502 and Thalassiosira sp. These two diatoms were cultured in a Guillard F/2 media, which was prepared from sea water with a salinity at 30 psu for 8 days. It was found that A. subtropica BUUC1502 shows better growth than Thalassiosira sp. (p<0.05). Whereas the biomass yield of Thalassiosira sp. is higher than of A. subtropica BUUC1502 (p<0.05). The diatoms were extracted using methanol solvent (99.8%). Crude extracts of A. subtropica BUUC1502 and Thalassiosira sp. yielded 0.38±0.01 and 0.36±0.00 g/g DW, respectively. The total phenolic compounds and fucoxanthin of them were similar (p>0.05) with 2.92-3.09 mg GAE/g crude extract and 18.85-19.74 mg/g DW, respectively. The IC50 of DPPH free radical inhibition of crude extracts from A. subtropica BUUC1502 and Thalassiosira sp. is 231.75±40.75 and 179.84±27.90 µg/mL, respectively, while the IC 50 of ABTS free radical inhibition is 68.28±7.31 and 46.90±1.83 µg/mL, respectively. The results of this research show that these two marine benthic diatoms may be an antioxidant source that can be used in various related fields.


Download data is not yet available.


Brand-Williams, W., Cuvelier, M.E., & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. Journal of Food Science and Technology, 28, 25–30.

Chenchakhan, P. (2015). Isolation of culturable marine microalgae from aquaculture ponds, Chanthaburi Province. Special Problem in Marine Technology, Faculty of Marine Technology (Research report). Chanthaburi: Burapha University.

Coulombier, N., Nicolau, E., Le Déan, L., Antheaume, C., Jauffrais, T., & Lebouvier, N. (2020). Impact of light intensity on antioxidant activity of tropical microalgae. Marine Drugs, 18(2), 122.

de Viçose, G.C., Porta, A., Viera, M.P., Fernández-Palacios, H., & Izquierdo, M.S. (2012). Effects of density on growth rates of four benthic diatoms and variations in biochemical composition associated with growth phase. Journal of Applied Phycology, 24, 427–1437.

Eilers, U., Bikoulis, A., Breitenbach, J., Büchel, C., & Sandmann, G. (2016). Limitations in the biosynthesis of fucoxanthin as targets for genetic engineering in Phaeodactylum tricornutum. Journal of Applied Phycology, 28, 123–129.

Fenglin, H., Ruili, L., Bao, H., & Liang, M. (2004). Free radical scavenging activity of extracts prepared from fresh leaves of selected Chinese medicinal plants. Fitoterapia, 75(1), 14–23.

Govindan, N., Maniam, G.P., AB. Rahim, M.H., Sulaiman, A.Z., Ajit, A., Chatsungnoen, T., & Chisti, Y. (2021). Production of renewable lipids by the diatom Amphora copulate. Fermentation, 7(37), 1-22.

Guillard, R.R. (1975). Culture of phytoplankton for feeding marine invertebrates. In W.L. Smith, & M.H. Chanley (Eds.), Culture of marine invertebrate animals (pp. 296–360). Plenum: New York.

Hemalatha, A., Parthiban, C., Saranya, C., Girija, K., & Anantharaman, P. (2015). Evaluation of antioxidant activities and total phenolic contents of different solvent extracts of selected marine diatoms. Indian Journal of Geo-Marine Science, 44(10), 1630-1636.

Khwancharoen, C., Direkbusarakom, S., & Wuthisuthimethavee, S. (2020) Effects of diatom (Amphora coffeaeformis) supplementation in diet on growth and growth-related genes expression in Pacific white shrimp (Litopenaeus vannamei) postlarvae. Wichcha Journal, 39(1), 99-113.

Kuczynska, P., Jemiola-Rzeminska, M., & Strzalka, K. (2015). Photosynthetic pigments in diatoms. Marine Drugs, 13, 5847-5881.

Lee, S-H., Karawita, R., Affan, A., Lee, J-B., Lee, B-J., & Jeo, Y-J. (2008a). Potential antioxidant activites of enzymatic digests from benthic diatoms Achnanthes longipes, Amphora coffeaeformis, and Navicula sp. (Bacillariophyceae). Journal of Food Science and Nutrition. 13, 166-175.

Lee, V.S., Chen, C.R., Lio, Y.W., Tzen, J.T., & Chang, C.I. (2008b). Structural determination and DPPH radicalscavenging activity of two acylated flavonoid tetraglycosides in oolong tea (Camellia sinensis). Chemical and Pharmaceutical Bulletin, 56, 851-853.

Luo, L., Li, S., Shen, K., Song, Y., Zhang, J., Su, W., & Yang, W. (2021). Study on the hemostasis characteristics of biomaterial frustules obtained from diatom Navicula australoshetlandica sp. Materials, 14, 3752.

Machana, K., Kanohrung, A., Srichan, S., Vongsak, B., Kutako, M., & Siafha, E. (2020). Monitoring of biochemical compounds and fatty acid in marine microalgae from the East Coast of Thailand. Walailak Journal of Science and Technology, 17(4), 334-347.

Mahfuz, S., Shang, Q., & Piao, X. (2021). Phenolic compounds as natural feed additives in poultry and swine diets: A review. Journal of Animal Science and Biotechnology, 12(48), 1-18.

Mai, T.D., Lee-Chang, K.J., Jameson, I.D., Hoang, T., Cai, N.B.A., & Pham, H.Q. (2021). Fatty acid profiles of selected microalgae used as live feeds for shrimp postlarvae in Vietnam. Aquaculture Journal, 1, 26–38.

Mohamed, S., Hashim, S.N., & Rahman, H.A. (2012). Seaweeds: A sustainable functional food for complementary and alternative therapy. Trends in Food Science & Technology, 23, 83-96.

Natrah, F.M., Yusoff, F.M., Shariff, M., Abbas, F., & Mariana, N.S. (2007). Screening of Malaysian indigenous microalgae for antioxidant properties and nutritional value. Journal of Applied Phycology, 19, 711–718.

Ortega-Salas, A.A., & Nava, P.F. (2017). Cultivation of the microalga Thalassiosira weissflogii to feed the rotifer Brachionus rotundiformis. Journal of Aquaculture & Marine Biology, 6(5). 00169.

Peltomaa, E., Hällfors, H., & Taipale, S.J. (2019). Comparison of diatoms and dinoflagellates from different habitats as sources of PUFAs. Marine Drugs, 17(4), 1-17.

Rabie, A.M., Tantawy, A.S., & Badr, M.I. (2016). Design, synthesis, and biological evaluation of novel 5-substituted-2-(3,4,5-trihydroxyphenyl)-1,3, 4-oxadiazoles as potent antioxidants. American Journal of Organic Chemistry, 6(2), 54-80.

Rahman, N.A., Katayama, T., Wahid, M.E.A., Kasan, N.A., Khatoon, H., Yamada, Y., & Takahashi, K. (2020). Taxon- and growth phase-specific antioxidant production by Chlorophyte, Bacillariophyte, and Haptophyte strains isolated from tropical waters. Frontier in Bioengineering and Biotechnology, 8, 1-16.

Rico, M., Lo´pez, A., Santana-Casiano, J. M., Gonza´lez, A.G., & Gonza´lez-Da´vila, M. (2013). Variability of the phenolic profile in the diatom Phaeodactylum tricornutum growing under copper and iron stress. Limnology and Oceanography, 58(1), 144–152.

Roleda, M.Y., Slocombe, S.P., Leakey, R.J.G., Day, J.G., Bell, E.M., & Stanley, M.S. (2013). Effect of temperature and nutrient regimes on biomass and lipid production by six oleaginous microalgae in batch culture employing a two- phase cultivation strategy. Bioresource Technology, 129, 439-449.

Sachindra, N.M., Sato, E., Madea, H., Hosokawa, M., Niwano, Y., Kohno, M., & Miyashita, Z. (2007). Radical scavenging and singlet oxygen quenching activity of marine carotenoid fucoxanthin and its metabolites. Journal of Agricultural and Food Chemistry, 55, 8516-8522.

Sadeer, N.B., Montesano, D., Albrizio, S., Zengin, G., & Mahomoodally, M.F. (2020). The versatility of antioxidant assays in food science and safety-chemistry, applications, strengths, and limitations. Antioxidants, 9, 709.

Sanchez-Moreno, C., Larrauri, J.A., & Saura-Calixto, F. (1998). A procedure to measure the antiradical efficiency of polyphenols. Journal of the Science of Food and Agriculture, 79, 270–276.

Seely, G.R., Duncan, M.J., & Vidiver, W.E. (1972). Preparative and analytical extraction of pigments from brown algae with dimethyl sulfoxide. Marine Biology, 12, 184-182.

Sies, H. (1997). Oxidative stress: Oxidants and antioxidants. Experimental Physiology. 82, 291–295.

Sukjamnong, S., & Santiyanont, R. (2012). Antioxidant activity of Fimbristylis ovata and its effect on RAGE gene expression in human lung adenocarcinoma epithelial cell line. Journal of Chemical and Pharmaceutical Research, 4(5), 2483-2489.

von Dassow, P., Chepurnov, V.A., & Armbrust, E.A. (2006). Relationships between growth rate, cell size, and induction of spermatogenesis in the centric diatom Thalassiosira weissflogii (Bacillariophyta). Journal of Phycology, 42, 887–899.

Xia, S., Wang, K., Wan, L., Li, A., Hu, Q., & Zhang, C. (2013). Production, characterization, and antioxidant activity offucoxanthin from the marine diatom Odontella aurita. Mar. Drugs, 11, 2667-2681.

Yang, H., Yuqiong, D., Huijing, D., Haiming, S. Yunhua, P., & Xiaobo, L. (2011). Antioxidant compounds from propolis collected in Anhui, China Haisha. Molecules, 16, 3444-3455.




How to Cite

Setthamongkol, P., Siranonthana, N., Chalermmueang, . R., Yuyen, Y., Watanachote, J., Hiransuchalert, R., & Kutako, M. (2023). Antioxidant Activities, Total Phenolic Compounds and Fucoxanthin of Marine Benthic Diatoms Amphora subtropica BUUC1502 and Thalassiosira sp. Journal of Food Health and Bioenvironmental Science, 14(3), 20–27. Retrieved from



Original Articles