Evaluation of Antimicrobial Activity of Rhinacanthus nasutus (L.) Kurz and Acanthus ilicifolius L. Extracts
Keywords:
Antimicrobial, Rhinacanthus nasutus, Acanthus ilicifolius, Extracts, CombinationAbstract
The aim of this research was to evaluate the antimicrobial properties of medical plants Rhinacanthus nasutus (L.) Kurz and Acanthus ilicifolius L. that were extracted with water/aqueous (AqER, AqEA) and ethanol (EtER, EtEA). The extracts were tested for activity and evaluated based on the effectiveness against three strains of microorganism: Gram-positive bacteria such as Staphylococcus aureus, Gram-negative bacteria such as Escherichia coli, and fungal such as Candida albicans by using the agar well diffusion and broth dilution method. The extracts from Rhinacanthus nasutus and Acanthus ilicifolius with ethanol showed the effect of inhibiting all microbes. The most effective against Candida albicans with the similar MIC and MFC values of 18.75 and 37.50 mg/mL. Meanwhile, extracts with water of Rhinacanthus nasutus and Acanthus ilicifolius with MIC values of 37.50 and 75 mg/mL and MFC values of 75 and 150 mg/mL, respectively. Conversely, these extracts showed no effect to inhibit Escherichia coli. This could be due to the capabilities of the solvents extractive and using part of the plant. Likewise, a combination of the extracts with ethanol of R. nasutus and A. ilicifolius to evaluate the efficacy of synergistic herbs can be considered from the MIC value. The antimicrobial synergy was evaluated in terms of FIC obtained from multiple-combination bactericidal/fungicidal assays. FICi value was interpreted as synergy only in ethanol extract R. nasutus+A. ilicifolius (EtRA) of 0.26.
References
Antonysamy, J. (2017). In vitro phytochemical and antibacterial studies on Rhinacanthus nasutus (L.) Kurz-A medicinally important plant. Journal of Microbiology & Experimentation, 4(2), 2-5.
Brimson, J.M., Prasanth, M.I., Malar, D.S., Brimson, S., & Tencomnao, T. (2020). Rhinacanthus nasutus “Tea” infusions and the medicinal benefits of the constituent phytochemicals. Nutrients, 12(12), 3776.
Bose, S., & Bose, A. (2008). Antimicrobial activity of Acanthus ilicifolius (L.). Indian Journal of Pharmaceutical Sciences, 70(6), 821.
Bukke, S., Raghu, P.S., Sailaja, G., & Kedam, T.R. (2011). The study on morphological, phytochemical and pharmacological aspects of Rhinacanthus nasutus (L.) kurz (A review). Journal of Applied Pharmaceutical Science, 1(8), 26-32.
Chanda, S., Rakholiya, K., Dholakia, K., & Baravalia, Y. (2013). Antimicrobial, antioxidant, and synergistic properties of two nutraceutical plants: Terminalia catappa L. and Colocasia esculenta L. Turkish Journal of Biology, 37(1), 81-91.
Chic, O.I., & Amom, T.A.T. (2014). Phytochemical and antimicrobial evaluation of leaf-extracts of Pterocarpus santalinoides. European Journal of Medicinal Plants, 4(1), 105-115.
Doern, C.D. (2014). When does 2 plus 2 equal 5? A review of antimicrobial synergy testing. Journal of Clinical Microbiology, 52(12), 4124-4128.
Drlica, K., & Zhao, X. (2007). Mutant selection window hypothesis updated. Clinical Infectious Diseases, 44(5), 681-688.
Gan, B.H., Cai, X., Javor, S., Köhler, T., & Reymond, J.L. (2020). Synergistic effect of propidium iodide and small molecule antibiotics with the antimicrobial peptide dendrimer G3KL against Gram-negative bacteria. Molecules, 25(23), 5643.
Gopal, R., Kim, Y.G., Lee, J.H., Lee, S.K., Chae, J.D., Son, B.K., ... Park, Y. (2014). Synergistic effects and antibiofilm properties of chimeric peptides against multidrug-resistant Acinetobacter baumannii strains. Antimicrobial Agents and Chemotherapy, 58(3), 1622-1629.
Govindasamy, C., & Arulpriya, M. (2013). Antimicrobial activity of Acanthus ilicifolius: Skin infection pathogens. Asian Pacific Journal of Tropical Disease, 3(3), 180- 183.
Jayapriya, G. (2015). Phytochemical analysis and antimicrobial efficacy of Rhinacanthus nasutus (l) Linn. Journal of Pharmacognosy and Phytochemistry, 3(6), 83-86.
Jeyaseelan, E.C., Tharmila, S., Sathiyaseelan, V., & Niranjan, K. (2012). Antibacterial activity of various solvent extracts of some selected medicinal plants present in Jaffna Peninsula. International Journal of Pharmaceutical & Biological Archives, 3(4), 792-96.
Jiang, L., Xie, N., Chen, M., Liu, Y., Wang, S., Mao, J., ... Huang, X. (2021). Synergistic combination of linezolid and fosfomycin closing each other’s mutant selection window to prevent enterococcal resistance. Frontiers in Microbiology, 11, 3634.
Komalamisra, N., Trongtokit, Y., Rongsriyam, Y., & Apiwathnasorn, C. (2005). Screening for larvicidal activity in some Thai plants against four mosquito vector species. Southeast Asian Journal of Tropical Medicine and Public Health, 36(6), 1412.
Kumar, A.S., Leema, M., Sridevi, S., Sreesaila, S., Anil, L.J., Mohit, M., ... Pillai, Z.S. (2021). A review on synthesis and various pharmacological aspects of Rhinacanthin-C with special emphasis on antidiabetic activity. In Materials Today: Proceedings (pp. 3084-3088). Kollam: Amrita Vishwa Vidyapeetham.
Kumar, V.A., Ammani, K., & Siddhardha, B. (2011). In vitro antimicrobial activity of leaf extracts of certain mangrove plants collected from Godavari estuarine of Konaseema delta, India. International Journal of Medicinal and Aromatic Plants, 1(2), 132-136.
Lukiati, B., Prabaningtyas, S., Aribah, D., & Arifah, S.N. (2019). Antibacterial activity of Rhinacanthus nasutus L. Kurz ointment to inhibit Staphylococcus aureus growth using in vitro dilution method. In IOP Conference Series: Earth and Environmental Science 276(1) (p. 012023). Malang: IOP Publishing.
Magaldi, S., Mata-Essayag, S., De Capriles, C.H., Pérez, C., Colella, M.T., Olaizola, C., & Ontiveros, Y. (2004). Well diffusion for antifungal susceptibility testing. International Journal of Infectious Diseases, 8(1), 39-45.
Maheshu, V., Sasikumar, J.M., Darsini, D.T.P., & Aseervatham, G.S.B. (2010). In vitro antioxidant activity and polyphenolic contents of Rauvolfia tetraphylla L, Rhinacanthus nasutus Kurz and Solena amplexicaulis (Lam.). International Journal of Biomedical and Pharmaceutical Sciences, 4, 81-86.
Mondal, M., Torequl Islam, M., Zaman Smrity, S., & Rouf, R. (2021). Preliminary phytochemical and anti-bacterial sensitivity test of ethanolic stem bark extract of Acanthus ilicifolius (L.). Journal of Pharmaceutical and Applied Chemistry, 7(1), 35-38.
Ni, W., Cai, X., Wei, C., Di, X., Cui, J., Wang, R., & Liu, Y. (2015). Efficacy of polymyxins in the treatment of carbapenem-resistant Enterobacteriaceae infections: A systematic review and meta-analysis. Brazilian Journal of Infectious Diseases, 19, 170-180.
Onvimol, N., Chankate, P., Mahakhunkijcharoen, Y, & Kalambaheti, T. (2020). Antibiotic resistance profile and association with integron type I among Salmonella enterica Isolates in Thailand. Journal of Pure and Applied Microbiology, 14(4), 2383-2397.
Panichayupakaranant, P., Charoonratana, T., & Sirikatitham, A. (2009). RP-HPLC analysis of rhinacanthins in Rhinacanthus nasutus: Validation and application for the preparation of rhinacanthin high-yielding extract. Journal of Chromatographic Science, 47(8), 705-708.
Panichayupakaranant, P., Shah, M.A., & Suksawat, T. (2021). Rhinacanthin-C and its potential to control diabetes mellitus. In Structure and Health Effects of Natural Products on Diabetes Mellitus (pp. 197-218). Singapore: Springer.
Park, Y.J., Baskar, T.B., Yeo, S.K., Arasu, M.V., Al-Dhabi, N.A., Lim, S.S., & Park, S.U. (2016). Composition of volatile compounds and in vitro antimicrobial activity of nine Mentha spp. SpringerPlus, 5(1), 1-10.
Pothiraj, C., Balaji, P., Shanthi, R., Gobinath, M., Babu, R.S., Munirah, A.A.D., ... Arumugam, R. (2021). Evaluating antimicrobial activities of Acanthus ilicifolius L. and Heliotropium curassavicum L. against bacterial pathogens: An in-vitro study. Journal of Infection and Public Health, 14(12), 1927-1934.
Puttarak, P., Charoonratana, T., & Panichayupakaranant, P. (2010). Antimicrobial activity and stability of rhinacanthins-rich Rhinacanthus nasutus extract. Phytomedicine, 17(5), 323–327.
Renneberg, J. (1993). Definitions of antibacterial interactions in animal infection models. Journal of Antimicrobial Chemotherapy, 31(suppl_D), 167-175.
Santos, F.A., Bastos, E.M.A., Uzeda, M., Carvalho, M.A.R., Farias, L.M., Moreira, E.S.A., & Braga, F.C. (2002). Antibacterial activity of Brazilian propolis and fractions against oral anaerobic bacteria. Journal of Ethnopharmacology, 80(1), 1-7.
Sendl, A., Chen, J.L., Jolad, S.D., Stoddart, C., Rozhon, E., Kernan, M., ... Balick, M. (1996). Two new naphthoquinones with antiviral activity from Rhinacanthus nasutus. Journal of Natural Products, 59(8), 808-811.
Sheikh, H.M., & Reshi, N.A. (2020). Characterisation of secondary metabolites from Rhinacanthus nasutus L. (Kurz) for the identification of novel antibacterial leads. Tropical Biomedicine, 37(3), 812-821.
Singh, I. (2017). Antimicrobials in higher plants: Classification, mode of action and bioactivities. Chemical Biology Letters, 4(1), 48-62.
Siripong, P., Wongseri, V., Piyaviriyakul, S., Yahaufai, J., Chanpai, R., & Kanakmedakul, K. (2006). Antibacterial potential of Rhinacanthus nasutus against clinically isolated bacteria from Thai cancer patients. Mahidol University Journal of Pharmaceutical Sciences, 33, 15-22.
Tiwana, G., Cock, I.E., White, A., & Cheesman, M.J. (2020). Use of specific combinations of the triphala plant component extracts to potentiate the inhibition of gastrointestinal bacterial growth. Journal of Ethnopharmacology, 260, 112937.
van Vuuren, S., & Viljoen, A. (2011). Plant-based antimicrobial studies-methods and approaches to study the interaction between natural products. Planta Medica, 77(11), 1168-1182.
Wink, M. (2015). Modes of action of herbal medicines and plant secondary metabolites. Medicines, 2(3), 251-286.
Xu, X., Xu, L., Yuan, G., Wang, Y., Qu, Y., & Zhou, M. (2018). Synergistic combination of two antimicrobial agents closing each other’s mutant selection windows to prevent antimicrobial resistance. Scientific Reports, 8(1), 1-7.
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.