Konjac: A Versatile Plant for Utilization in Nutrition, Health and Environmental Sustainability

Authors

  • Wanpen Trongtorkit Faculty of Science and Technology, Pibulsongkram Rajabhat University, Phitsanulok 65000
  • Jiraphat Kaewsritong Faculty of Science and Technology, Pibulsongkram Rajabhat University, Phitsanulok 65000
  • Khongsak Srikaeo Faculty of Food and Agricultural Technology, Pibulsongkram Rajabhat University, Phitsanulok 65000

Keywords:

Medicinal plant, Polysaccharide, Sustainability, Rural development

Abstract

This review aims to furnish a thorough examination of konjac (Amorphophalluss pp.) and its derivative glucomannan (KGM), emphasizing its production, functional characteristics, and applications in food technology, healthcare, and environmental sustainability. Konjac and KGM have gained attention as natural, biologically active substances with excellent biocompatibility and harmless characteristics. Globally, konjac is produced in significant quantities, with major cultivation occurring in China and Japan, and its production is expanding into other Southeast Asian countries. The corms and stems of edible konjac are consumed as vegetable ingredients in Asian cuisines. Konjac flour and KGM have been registered as food additives being used as a gelling agent, thickener, film former, and emulsifier. Deacetylated KGM is made by taking off the acetyl groups from the molecular chains of KGM. When heated and mixed with an alkaline coagulant, it turns into a thermos-irreversible gel that can be used in more ways. KGM has the potential to be used as a fat replacer and biofilm component. As a soluble dietary fiber, KGM is beneficial to the digestive system. KGM exhibits many health benefits, such as exerting anti-diabetic effects, reducing triglycerides, cholesterol, blood glucose, and weight, regulating the gastrointestinal tract, and improving immunity. KGM applications also expand to biomedicine, including drug delivery and wound healing. In addition, konjac can be promoted to be planted in community forests for environmental conservation and deforestation concerns, being considered as non-timber forest products. In conclusion, konjac and KGM demonstrate multifunctional attributes. They have demonstrated widespread applications. This review article highlights the potential of konjac as a sustainable, health-enhancing resource, providing insights into future research and industrial applications.

References

Ai, T., Shang, L., He, C., Teng, Y., Ren, C., Zhou, P., … Li, B. (2019). Development of multi-layered gastric floating tablets based on konjac glucomannan: a modified calcium supplement with enhanced bioavailability. Food & Function, 10(10), 6429–6437.

Alonso-Sande, M., Teijeiro-Osorio, D., Remuñán-López, C., & Alonso, M.J. (2009). Glucomannan, a promising polysaccharide for biopharmaceutical purposes. European Journal of Pharmaceutics and Biopharmaceutics, 72(2), 453–462. https://doi.org/10.1016/j.ejpb.2009.02.002

Aprilia, V., Kusumawardani, N., Fauzi, R., Estiningsih, D., & Kusumawati, D. (2023). Calcium oxalate levels, glucomannan levels, and antioxidative activities of different sized Amorphophallus oncophyllus particles and the maceration of Strobilanthes crispus. IOP Conference Series: Earth and Environmental Science, 1241(1), 12088.

Arvill, A., & Bodin, L. (1995). Effect of short-term ingestion of konjac glucomannan on serum cholesterol in healthy men. The American Journal of Clinical Nutrition, 61(3), 585–589. https://doi.org/10.1093/ajcn/61.3.585

Baumgartner, R.J. (2019). Sustainable development goals and the forest sector—A complex relationship. Forests, 10(2), 152. https://doi.org/10.3390/f10020152

Behera, S.S., & Ray, R.C. (2017). Nutritional and potential health benefits of konjac glucomannan, a promising polysaccharide of elephant foot yam, Amorphophallus konjac K. Koch: A review. Food Reviews International, 33(1), 22–43. https://doi.org/10.1080/87559129.2015.1137314

Belcher, B., & Schreckenberg, K. (2007). Commercialisation of non-timber forest products: A reality check. Development Policy Review, 25(3), 355–377. https://doi.org/10.1111/j.1467-7679.2007.00374.x

Brenner, T., Tuvikene, R., Fang, Y., Matsukawa, S., & Nishinari, K. (2015). Rheology of highly elastic iota-carrageenan/kappa-carrageenan/xanthan/konjac glucomannan gels. Food Hydrocolloids, 44, 136–144.

Charoenrein, S., Tatirat, O., Rengsutthi, K., & Thongngam, M. (2011). Effect of konjac glucomannan on syneresis, textural properties and the microstructure of frozen rice starch gels. Carbohydrate Polymers, 83(1), 291–296.

Chen, H., Nie, Q., Hu, J., Huang, X., Yin, J., & Nie, S. (2021). Multiomics approach to explore the amelioration mechanisms of glucomannans on the metabolic disorder of type 2 diabetic rats. Journal of Agricultural and Food Chemistry, 69(8), 2632–2645. https://doi.org/10.1021/acs.jafc.0c07320

Chen, H., Nie, Q., Hu, J., Huang, X., Zhang, K., Pan, S., & Nie, S. (2019). Hypoglycemic and hypolipidemic effects of glucomannan extracted from konjac on type 2 diabetic rats. Journal of Agricultural and Food Chemistry, 67(18), 5278–5288. https://doi.org/10.1021/acs.jafc.9b00535

Choonim, V., Suksard, S., Mianmit, N., & Sriarkarin, S. (2022). Financial analysis of konjac planting in the lerto royal project development center, Tak province. Thai Journal of Forestry, 41(2), 15–26. (In Thai).

Chua, M., Baldwin, T.C., Hocking, T.J., & Chan, K. (2010). Traditional uses and potential health benefits 14 of Amorphophallus konjac K. Koch ex N.E.Br. Journal of Ethnopharmacology, 128(2), 268–278.

da Silva, D.F., de Souza Ferreira, S.B., Bruschi, M.L., Britten, M., & Matumoto-Pintro, P.T. (2016). Effect of commercial konjac glucomannan and konjac flours on textural, rheological and microstructural properties of low fat processed cheese. Food Hydrocolloids, 60, 308–316. https://doi.org/10.1016/j.foodhyd.2016.04.002

Dai, S., Corke, H., & Shah, N.P. (2016). Utilization of konjac glucomannan as a fat replacer in low-fat and skimmed yogurt. Journal of Dairy Science, 99(9), 7063–7074. https://doi.org/10.3168/jds.2016-11174

Dai, S., Jiang, F., Corke, H., & Shah, N.P. (2018). Physicochemical and textural properties of mozzarella cheese made with konjac glucomannan as a fat replacer. Food Research International, 107, 691–699.

Dash, S.R., Kundu, A., & Kundu, C.N. (2024). The role of viruses in cancer progression versus cancer treatment: A dual paradigm. Life Sciences, 341, 122506. https://doi.org/10.1016/j.lfs.2024.122506

Deng, C., Hu, Y., Conceição, M., Wood, M.J.A., Zhong, H., Wang, Y., … Qiu, L. (2023). Oral delivery of layer-by-layer coated exosomes for colitis therapy. Journal of Controlled Release, 354, 635–650.

Deng, J., Zhong, J., Long, J., Zou, X., Wang, D., Song, Y., … Wei, X. (2020). Hypoglycemic effects and mechanism of different molecular weights of konjac glucomannans in type 2 diabetic rats. International Journal of Biological Macromolecules, 165, 2231–2243. https://doi.org/10.1016/j.ijbiomac.2020.10.223

Du, Q., Liu, J., & Ding, Y. (2021). Recent progress in biological activities and health benefits of konjac glucomannan and its derivatives. Bioactive Carbohydrates and Dietary Fibre, 26, 100270.

Du, X., Li, J., Chen, J., & Li, B. (2012). Effect of degree of deacetylation on physicochemical and gelation properties of konjac glucomannan. Food Research International, 46(1), 270–278.

Du, Y., Sun, J., Wang, L., Wu, C., Gong, J., Lin, L., … Pang, J. (2019). Development of antimicrobial packaging materials by incorporation of gallic acid into Ca2+ crosslinking konjac glucomannan/gellan gum films. International Journal of Biological Macromolecules, 137, 1076–

Duan, N., Li, Q., Meng, X., Wang, Z., & Wu, S. (2021). Preparation and characterization of kcarrageenan/konjac glucomannan/TiO2 nanocomposite film with efficient anti-fungal activity and its application in strawberry preservation. Food Chemistry, 364, 130441. https://doi.org/10.1016/j.foodchem.2021.130441

EFSA Panel on Food Additives and Nutrient Sources added to Food (ANS), Mortensen, A., Aguilar, F., Crebelli, R., Di Domenico, A., Frutos, M. J., ... Dusemund, B. (2017). Re‐evaluation of konjac gum (E 425 i) and konjac glucomannan (E 425 ii) as food additives. EFSA Journal, 15(6), e04864

Eivazzadeh-Keihan, R., Sadat, Z., Lalebeigi, F., Naderi, N., Panahi, L., Ganjali, F., … Chidar, E. (2024). Effects of mechanical properties of carbon-based nanocomposites on scaffolds for tissue engineering applications: a comprehensive review. Nanoscale Advances, 6, 337–366. https://doi.org/10.1039/D3NA00539F

Fang, W., & Wu, P. (2004). Variations of konjac glucomannan (KGM) from Amorphophallus konjac and its refined powder in China. Food Hydrocolloids, 18(1), 167–170. https://doi.org/10.1016/S0268-005X(03)00105-1

Febrinasari, R.P., Rizqia, P.N., & Hikmayani, N.H. (2024). The antidiabetic effects of konjac glucomannan on the clinical outcomes of patients with T2DM: A systematic review. Journal of Pharmacy & Pharmacognosy Research, 12(1), S96-S102.

Fernandes, A.C.S., Muxfeldt, L., Motta, N.G., Skonieski, C., Fagundes, K.R., Sandri, G., … Araujo, S.M. (2023). Gummies candy enriched with Konjac glucomannan reduces hunger intensity and waist circumference of overweight individuals. International Journal of Biological Macromolecules, 226, 72–76.

Fernández-Martín, F., López-López, I., Cofrades, S., & Colmenero, F.J. (2009). Influence of adding sea spaghetti seaweed and replacing the animal fat with olive oil or a konjac gel on pork meat batter gelation: Potential protein/alginate association. Meat Science, 83(2), 209–217. https://doi.org/10.1016/j.meatsci.2009.04.012

Follett, J.M., Douglas, J.A., & Cave, P. (2002). Konjac production in Japan and potential for New Zealand. Combined Proceedings of the International Plant Propagators Society, 52, 186–190.

Gan, J., Dou, Y., Li, Y., Wang, Z., Wang, L., Liu, S., ... Dong, L. (2018). Producing anti-inflammatory macrophages by nanoparticle-triggered clustering of mannose receptors. Biomaterials, 178, 95-108.

Genevro, G.M., Neto, R.J.G., de Almeida Paulo, L., Lopes, P.S., de Moraes, M.A., & Beppu, M.M. (2019). Glucomannan asymmetric membranes for wound dressing. Journal of Materials Research, 34(4), 481–489.

Geng, X., Zhao, Y., Zhao, N., Zhu, Q., & Zhang, M. (2023). Quality characteristics and gastrointestinal fate of low fat emulsified sausage formulated with konjac glucomannan/oat β-glucan composite hydrogel. International Journal of Biological Macromolecules, 239, 124251. https://doi.org/10.1016/j.ijbiomac.2023.124251

Geraghty, R., Wood, K., & Sayer, J.A. (2020). Calcium oxalate crystal deposition in the kidney: identification, causes and consequences. Urolithiasis, 48(5), 377–384. https://doi.org/10.1007/s00240-020-01178-x

Gu, C., Wang, C., Ma, W., Gao, Y., Li, J., Jin, Q., … Wu, X. (2023). Drug-loaded konjac glucomannan/metal–organic framework composite hydrogels as antibacterial and anti-inflammatory cell scaffolds. ACS Applied Materials & Interfaces, 15(35), 41287–41298. https://doi.org/10.1021/acsami.3c09530

Guil-Guerrero, J.L. (2014). The safety of edible wild plants: Fuller discussion may be needed. Journal of Food Composition and Analysis, 35(1), 18–20. https://doi.org/10.1016/j.jfca.2013.12.007

Guo, L., Yokoyama, W., Chen, M., & Zhong, F. (2021). Konjac glucomannan molecular and rheological properties that delay gastric emptying and improve the regulation of appetite. Food Hydrocolloids, 120, 106894.

Haijan, Z., Ke, Z., Dawei, Z., Haedi, A.R., Cheng, C., & Poorasadollah, E. (2024). Does glucomannan supplementation exert profitable effects on serum lipid profile in adults? A systematic review and meta-analysis. Prostaglandins & Other Lipid Mediators, 176, 106934. https://doi.org/10.1016/j.prostaglandins.2023.106934

Haruna, M.H., Wang, Y., & Pang, J. (2019). Konjac glucomannan-based composite films fabricated in the presence of carnauba wax emulsion: Hydrophobicity, mechanical and microstructural properties evaluation. Journal of Food Science and Technology, 56, 5138–5145. https://doi.org/10.1007/s13197-019-03932-7

Hermudananto, H., Permadi, D.B., Septiana, R.M., Riyanto, S., & Pratama, A.A. (2019). Adoption of agroforestry-porang model for land utilization under teak stands. Indonesian Journal of Community Engagement, 5, 416-436.

Hetterscheid, W., Li, H., Wang, Z., Mekkerdchoo, O., & Claudel, C. (2020). Botanical background to Amorphophallus. In G., Srzednicki & C. Borompichaichartkul (Eds.), Konjac Glucomannan: Production, Processing, and Functional Applications (pp.5-99). Boca Raton, FL: CRC Press.

Hong, J., Shi, Y., Chen, J., Mi, M., Ren, Q., Zhang, Y., … Kang, Y. (2023). Konjac glucomannan attenuate high-fat diet-fed obesity through enhancing β-adrenergic-mediated thermogenesis in inguinal white adipose tissue in mice. Glycoconjugate Journal, 40(5), 575–586. https://doi.org/10.1007/s10719-023-10108-4

Huang, L., Liu, S., Wang, Y., Li, H., Cao, J., & Liu, X. (2023). Effect of cooking methods and polysaccharide addition on the cooking performance of cubic fat substitutes. LWT, 181, 114741. https://doi.org/10.1016/j.lwt.2023.114741

Impaprasert, R., Jianrong, Z., & Srzednicki, G. (2020). Processing of konjac flour. In G. Srzednicki & C. Borompichaichartkul (Eds.), Konjac Glucomannan: Production, Processing, and Functional Applications (pp. 173-188). Boca Raton, FL: CRC Press.

Jian, X., Jian, S., & Deng, B. (2024). Konjac Glucomannan: A functional food additive for preventing metabolic syndrome. Journal of Functional Foods, 115, 106108. https://doi.org/10.1016/j.jff.2023.106108

Jiang, Yongchao, Li, G., Liu, J., Li, M., Li, Q., & Tang, K. (2021). Gelatin/oxidized konjac glucomannan composite hydrogels with high resistance to large deformation for tissue engineering applications. ACS Applied Bio Materials, 4(2), 1536–1543. https://doi.org/10.1016/j.jff.2023.106108

Jiang, Yungang, Huang, J., Wu, X., Ren, Y., Li, Z., & Ren, J. (2020). Controlled release of silver ions from AgNPs using a hydrogel based on konjac glucomannan and chitosan for infected wounds. International Journal of Biological Macromolecules, 149, 148–157. https://doi.org/10.1016/j.ijbiomac.2020.01.107

Jiménez-Colmenero, F, Cofrades, S., Herrero, A.M., Fernández-Martín, F., Rodríguez-Salas, L., & RuizCapillas, C. (2012). Konjac gel fat analogue for use in meat products: Comparison with pork fats. Food Hydrocolloids, 26(1), 63–72. https://doi.org/10.1016/j.foodhyd.2011.07.013

Jiménez-Colmenero, F., Cofrades, S., López-López, I., Ruiz-Capillas, C., Pintado, T., & Solas, M.T. (2010). Technological and sensory characteristics of reduced/low-fat, low-salt frankfurters a affected by the addition of konjac and seaweed. Meat Science, 84(3), 356–363. https://doi.org/10.1016/j.meatsci.2009.08.016

Jing, Y.S., Ma, Y.F., Pan, F.B., Li, M.S., Zheng, Y.G., Wu, L.F., … Zhang, D.S. (2022). An insight into antihyperlipidemic effects of polysaccharides from natural resources. Molecules, 27(6), 1903.

Kaczmarek-Szczepańska, B., Zasada, L., D’Amora, U., Pałubicka, A., Michno, A., Ronowska, A., … Wekwejt, M. (2024). Bioactivation of konjac glucomannan films by tannic acid and gluconolactone addition. ACS Applied Materials & Interfaces, 16(35), 46102–46112. https://doi.org/10.1021/acsami.4c11510

Kapoor, D.U., Sharma, H., Maheshwari, R., Pareek, A., Gaur, M., Prajapati, B.G., ... & Sriamornsak, P. (2024). Konjac glucomannan: A comprehensive review of its extraction, health benefits, and pharmaceutical applications. Carbohydrate Polymers, 339, 122266. https://doi.org/10.1016/j.carbpol.2023.122266

Kardum, N., Petrović-Oggiano, G., Takic, M., Glibetić, N., Zec, M., Debeljak-Martacic, J., & KonićRistić, A. (2014). Effects of glucomannan-enriched, aronia juice-based supplement on cellular antioxidant enzymes and membrane lipid status in subjects with abdominal obesity. The Scientific World Journal, 2014(1), 869250.

Kumar, A., Patel, A.A., & Gupta, V.K. (2017). Reduction in oxalate, acridity, phenolic content and antioxidant activity of Amorphophallus paeoniifolius var. Gajendra upon cooking. International Food Research Journal, 24(4), 1614-1620.

Kumoro, A.C., Budiyati, C.S., & Retnowati, D.S. (2014). Calcium oxalate reduction during soaking of giant taro (Alocasia macrorrhiza (L.) Schott) corm chips in sodium bicarbonate solution. International Food Research Journal, 21(4), 1583-1588.

Kurihara, H. (1979). Trends and problems of konjac (Amorphophallus konjac) cultivation in Japan. Japan Agricultural Research Quarterly, 13, 174-179.

Le Bail, P., Lafarge, C., & Cayot, N. (2020). Physico-chemical properties of konjac glucomannan. In G. Srzednicki & C. Borompichaichartkul (Eds.), Konjac glucomannan: Production, processing, and functional applications (pp. 189–207). Boca Raton, FL: CRC Press.

Lee, M.H., Baek, M.H., Cha, D.S., Park, H.J., & Lim, S.T. (2002). Freeze–thaw stabilization of sweet potato starch gel by polysaccharide gums. Food Hydrocolloids, 16(4), 345–352.

Lepcha, L.D., Shukla, G., Pala, N.A., Vineeta, Pal, P.K., & Chakravarty, S. (2019). Contribution of NTFPs on livelihood of forest-fringe communities in Jaldapara National Park, India. Journal of Sustainable Forestry, 38(3), 213–229.

Lewu, M.N., Adebola, P.O., & Afolayan, A.J. (2010). Effect of cooking on the mineral contents and antinutritional factors in seven accessions of Colocasia esculenta (L.) Schott growing in South Africa. Journal of Food Composition and Analysis, 23(5), 389–393.

Li, H., Liang, X., Chen, Y., Liu, K., Fu, X., Zhang, C., ... Yang, J. (2023). Synergy of antioxidant and M2 polarization in polyphenol‐modified konjac glucomannan dressing for remodeling wound healing microenvironment. Bioengineering & Translational Medicine, 8(2), e10398.

Li, H., Liu, H., Cui, S., Cai, J., & Li, Y. (2018). High-yielding cultivation technology of konjac. Hans Journal of Agricultural Sciences, 8, 1103–1107.

Li, J., Ye, T., Wu, X., Chen, J., Wang, S., Lin, L., & Li, B. (2014). Preparation and characterization of heterogeneous deacetylated konjac glucomannan. Food Hydrocolloids, 40, 9–15.

Li, P., Liu, C., Luo, Y., Shi, H., Li, Q., PinChu, C., Li, X., Yang, J., & Fan, W. (2022). Oxalate in plants: metabolism, function, regulation, and application. Journal of Agricultural and Food Chemistry, 70(51), 16037–16049.

Li, X.M., Wu, Z.Z., Zhang, B., Pan, Y., Meng, R., & Chen, H.Q. (2019). Fabrication of chitosan hydrochloride and carboxymethyl starch complex nanogels as potential delivery vehicles for curcumin. Food Chemistry, 293, 197–203.

Li, Xiang, Chen, L., Yang, Y., Ma, M., Liu, D., & Li, Z. (2024). Hydroxypropyl β-cyclodextrin-crosslinked konjac glucomannan supramolecular hydrogel as dual-action drug carrier for a sustained release. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 104(1), 25–38.

Li, Xunhan, Jayachandran, M., & Xu, B. (2021b). Antidiabetic effect of konjac glucomannan via insulin signaling pathway regulation in high-fat diet and streptozotocin-induced diabetic rats. Food Research International, 149, 110664.

Li, Z., Zhang, L., Mao, C., Song, Z., Li, X., & Liu, C. (2021a). Preparation and characterization of konjac glucomannan and gum arabic composite gel. International Journal of Biological Macromolecules, 183, 2121–2130.

Lin, W., Ni, Y., & Pang, J. (2019). Microfluidic spinning of poly (methyl methacrylate)/konjac glucomannan active food packaging films based on hydrophilic/hydrophobic strategy. Carbohydrate Polymers, 222, 114986.

Liu, P., Jin, K., Wong, W., Wang, Y., Liang, T., He, M., ... Li, C. (2021). Ionic liquid functionalized nonreleasing antibacterial hydrogel dressing coupled with electrical stimulation for the promotion of diabetic wound healing. Chemical Engineering Journal, 415, 129025.

Liu, Q., Fang, J., Huang, W., Liu, S., Zhang, X., Gong, G., … Wang, Z. (2023). The intervention effects of konjac glucomannan with different molecular weights on high-fat and high-fructose diet-fed obese mice based on the regulation of gut microbiota. Food Research International, 165, 112498.

Llorens, A., Lloret, E., Picouet, P.A., Trbojevich, R., & Fernandez, A. (2012). Metallic-based micro and nanocomposites in food contact materials and active food packaging. Trends in Food Science & Technology, 24(1), 19–29.

Long, C.L., Li, H., Ouyang, Z., Yang, X., Li, Q., & Trangmar, B. (2003). Strategies for agrobiodiversity conservation and promotion: a case from Yunnan, China. Biodiversity & Conservation, 12, 1145–1156.

Lontoh, A.P., Santosa, E., Kurniawati, A., & Sari, M. (2019). Yield evaluation of selected clones apomictic iles-iles (Amorphophallus muelleri Blume) on second growing period. Indonesian Journal of Agronomy, 47(2), 171–179.

Luan, J., Wu, K., Li, C., Liu, J., Ni, X., Xiao, M., … Jiang, F. (2017). pH-Sensitive drug delivery system based on hydrophobic modified konjac glucomannan. Carbohydrate Polymers, 171, 9–17.

Ma, S., Zhu, P., & Wang, M. (2019). Effects of konjac glucomannan on pasting and rheological properties of corn starch. Food Hydrocolloids, 89, 234–240.

Mao, Y.H., Xu, Y., Song, F., Wang, Z.M., Li, Y.H., Zhao, M., ...Yang, Y. (2022). Protective effects of konjac glucomannan on gut microbiome with antibiotic perturbation in mice. Carbohydrate Polymers, 290, 119476.

Mirzababaei, A., Zandkarimi, R., Moradi, S., Rasaei, N., Amini, M.R., Pourreza, S., ... Mirzaei, K. (2022). The effect of Glucomannan on fasting and postprandial blood glucose in adults: A systematic review and meta-analysis of randomized controlled trials. Journal of Diabetes & Metabolic Disorders, 21(1), 1055–1063.

Musazadeh, V., Rostami, R.Y., Moridpour, A.H., Hosseini, Z.B., Nikpayam, O., Falahatzadeh, M., & Faghfouri, A.H. (2024). The effect of glucomannan supplementation on lipid profile in adults: A GRADE-assessed systematic review and meta-analysis. BMC Cardiovascular Disorders, 24(1), 545.

Misra, R.S. (2013). Konjac needs domestication. Indian Horticulture, 58(3), 22–24.

Miwa, M., Nakao, Y., & Nara, K. (1994). Food applications of curdlan. In K. Nishinari & E. Doi (Eds.), Food hydrocolloids: Structures, properties, and functions (pp. 119–124). Boston, MA: Springer.

Mon, S.M., Okuda, T., Yamada, T., Thant, A.M., Shin, T., Chew, W.C., … Shigematsu, C. (2023). Can commercialization of non-timber forest product (NTFP) reduce deforestation in Myanmar? Tropics, 31(4), 81–93.

Ni, Y., Lin, W., Mu, R.J., Wang, L., Zhang, X., Wu, C., … Pang, J. (2019). Microfluidic fabrication of robust konjac glucomannan-based microfiber scaffolds with high antioxidant performance. Journal of Sol-Gel Science and Technology, 90, 214–220.

Ni, Y., Sun, J., & Wang, J. (2021). Enhanced antimicrobial activity of konjac glucomannan nanocomposite films for food packaging. Carbohydrate Polymers, 267, 118215.

Nurshanti, D.F., Lakitan, B., Hasmeda, M., Ferlinahayati, F., Negara, Z.P., Susilawati, S., … Budianta, D. (2022). Planting materials, shading effects, and non-destructive estimation of compound leaf area in konjac (Amorphophallus muelleri). Trends in Sciences, 19(9), 3973.

Onitake, T., Ueno, Y., Tanaka, S., Sagami, S., Hayashi, R., Nagai, K., Hide, M., & Chayama, K. (2015). Pulverized konjac glucomannan ameliorates oxazolone-induced colitis in mice. European Journal of Nutrition, 54, 959–969.

Osburn, W.N., & Keeton, J.T. (2004). Evaluation of low-fat sausage containing desinewed lamb and konjac gel. Meat Science, 68(2), 221–233.

Pan, Z., Zhong, W., Xu, J., Li, D., Lin, J., Wu, W., … Wu, C. (2024). Effects of oregano essential oil Pickering emulsion and ZnO nanoparticles on the properties and antibacterial activity of konjac glucomannan/carboxymethyl chitosan nanocomposite films. RSC Advances, 14(10), 6548–6556.

Pan, X., Zong, Q., Liu, C., Wu, H., Fu, B., Wang, Y., … Zhai, Y. (2024). Konjac glucomannan exerts regulatory effects on macrophages and its applications in biomedical engineering. Carbohydrate Polymers, 345, 122571.

Pan, Zhidong, He, K., & Wang, Y. (2008). Deacetylation of konjac glucomannan by mechanochemical treatment. Journal of Applied Polymer Science, 108(3), 1566–1573.

Pandey, A.K., Tripathi, Y.C., & Kumar, A. (2016). Non timber forest products (NTFPs) for sustained livelihood: Challenges and strategies. Research Journal of Forestry, 10(1), 1–7.

Peng, S., Zhang, J., Zhang, T., Hati, S., Mo, H., Xu, D., … Liu, Z. (2022). Characterization of carvacrol incorporated antimicrobial film based on agar/konjac glucomannan and its application in chicken preservation. Journal of Food Engineering, 330, 111091.

Penroj, P., Mitchell, J.R., Hill, S.E., & Ganjanagunchorn, W. (2005). Effect of konjac glucomannan deacetylation on the properties of gels formed from mixtures of kappa carrageenan and konjac glucomannan. Carbohydrate Polymers, 59(3), 367–376.

Pichaiyongvongdee, S., Foophow, T., Yoodee, P., & Rasamipaiboon, N. (2023). Evaluation of extraction methods of dietary fiber from pomelo juice byproducts and particle size distribution on the physicochemical and functional properties. Journal of Food Health and Bioenvironmental Science, 14(2), 20–27.

Qiao, Q., Lei, S., Zhang, W., Shao, G., Sun, Y., & Han, Y. (2024). Contrasting non-timber forest products’ case studies in underdeveloped areas in china. Forests, 15(9), 1629.

Rafani, I., Alliance, I.A.R., Azis, M., Dermoredjo, S.K., & Sudaryanto, T. (2021). Konjac (Amorphophallus muelleri Blume): A promising agricultural commodity export of Indonesia. Retrieved from https://ap.fftc.org.tw/article/2816

Ran, X., & Yang, H. (2022). Promoted strain-hardening and crystallinity of a soy protein-konjac glucomannan complex gel by konjac glucomannan. Food Hydrocolloids, 133, 107959.

Redondo, M., Presa, R., Granja, P.L., Araújo, M., & Sousa, A. (2023). Konjac glucomannan photocrosslinked hydrogels for in vitro 3D cell culture. Materials Today Chemistry, 34, 101761.

Shackleton, C.M., & de Vos, A. (2022). How many people globally actually use non-timber forest products? Forest Policy and Economics, 135, 102659. https://doi.org/10.1016/j.forpol.2021.102659

Shang, W., Li, H., Strappe, P., Zhou, Z., & Blanchard, C. (2019). Konjac glucomannans attenuate dietinduced fat accumulation on livers and its regulation pathway. Journal of Functional Foods, 52, 258–265.

Shenglin, Z., Xuekuan, J., & Purwadaria, H.K. (2020a). Field production of konjac. In G. Srzednicki & C. Borompichaichartkul (Eds.), Konjac glucomannan: Production, processing, and functional applications (pp. 115–159). Boca Raton, FL: CRC Press.

Shenglin, Z., Purwadaria, H.K., Borompichaichartkul, C., & Tripetch, P. (2020). Konjac industry in major producing countries. In G. Srzednicki & C. Borompichaichartkul (Eds.), Konjac glucomannan: Production, processing, and functional applications (pp. 223–254). Boca Raton, FL: CRC Press.

Sjah, T., Budastra, I., & Tanaya, I. (2021). Developing porang agribusiness for multiple stakeholder benefits and supporting sustainable development in dryland areas of Lombok. IOP Conference Series: Earth and Environmental Science, 712(1), 012031. https://doi.org/10.1088/1755-1315/712/1/012031

SkyQuest. (2025). Konjac market size, share, and growth analysis. Retrieved March 10, 2025, from https://www.skyquestt.com/report/konjac-market

Song, Q., Wu, L., Li, S., Zhao, G., Cheng, Y., & Zhou, Y. (2022). Aggregation of konjac glucomannan by ethanol under low-alkali treatment. Food Chemistry: X, 15, 100407.

Srzednicki, G., & Borompichaichartkul, C. (2020). Konjac glucomannan: Production, processing, and functional applications. Boca Raton, FL: CRC Press.

Su, R., Su, W., Cai, J., Cen, L., Huang, S., Wang, Y., … Li, P. (2024). Photodynamic antibacterial application of TiO2/curcumin/hydroxypropyl-cyclodextrin and its konjac glucomannan composite films. International Journal of Biological Macromolecules, 254, 127716.

Suksard, S., Norkaew, A., & Pattaratuma, A. (2019). The application of value chain concept on value added of Amorphophallus muelleri Blume products for highland people in Tak province. Thai Journal of Forestry, 38, 152-165.

Sun, J., Jiang, H., Wu, H., Tong, C., Pang, J., & Wu, C. (2020). Multifunctional bionanocomposite films based on konjac glucomannan/chitosan with nano-ZnO and mulberry anthocyanin extract for active food packaging. Food Hydrocolloids, 107, 105942.

Sun, Y., Xu, X., Zhang, Q., Zhang, D., Xie, X., Zhou, H., … Pang, J. (2023). Review of konjac glucomannan structure, properties, gelation mechanism, and application in medical biology. Polymers, 15(8), 1852.

Takigami, S. (2009). Konjac mannan. In G.O. Phillips & P.A. Williams (Eds.), Handbook of hydrocolloids (pp. 889–901). Cambridge, UK: Woodhead.

Tang, D.X., Liu, K., Yang, J.Y., Wang, Z.J., Fu, L.L., Yang, X.J., … Liu, Y. (2024). Artificial nonenzymatic antioxidant Prussian blue/KGM-BSA nanocomposite hydrogel dressing as ROS scavenging for diabetic wound healing. International Journal of Biological Macromolecules, 266, 131106.

Tatirat, O., Charunuch, C., Kerr, W.L.K., & Charoenrein, S. (2013). Use of ethanol solution for extruding konjac glucomannan to modify its water absorption and water solubility. Agriculture and Natural Resources, 47(1), 132–142.

Thangavel, P., Kanniyappan, H., Chakraborty, S., Chaudhary, S., Wallepure, A., & Muthuvijayan, V. (2023). Fabrication of konjac glucomannan‐silk fibroin based biomimetic scaffolds for improved vascularization and soft tissue engineering applications. Journal of Applied Polymer Science, 140(35), e54333.

Tong, M.Q., Luo, L.Z., Xue, P.P., Han, Y.H., Wang, L.F., Zhuge, D.L., … Xu, H.L. (2021). Glucoseresponsive hydrogel enhances the preventive effect of insulin and liraglutide on diabetic nephropathy of rats. Acta Biomaterialia, 122, 111–132.

Tören, E., Buzgo, M., Mazari, A.A., & Khan, M.Z. (2024). Recent advances in biopolymer based electrospun nanomaterials for drug delivery systems. Polymers for Advanced Technologies, 35(3), e6309.

Vuksan, V., Jenkins, D.J., Spadafora, P., Sievenpiper, J.L., Owen, R., Vidgen, E., … Bruce-Thompson, C. (1999). Konjac-mannan (glucomannan) improves glycemia and other associated risk factors for coronary heart disease in type 2 diabetes. A randomized controlled metabolic trial. Diabetes Care, 22(6), 913–919.

Vuksan, V., Sievenpiper, J.L., Xu, Z., Wong, E.Y.Y., Jenkins, A.L., Beljan-Zdravkovic, U., … Stavro, M.P. (2001). Konjac-Mannan and American ginsing: emerging alternative therapies for type 2 diabetes mellitus. Journal of the American College of Nutrition, 20(sup5), 370S-380S.

Wahidah, B.F., Afiati, N., & Jumari, J. (2021). Community knowledge of amorphophallus muelleri blume: Cultivation and utilization in Central Java, Indonesia. Biodiversitas Journal of Biological Diversity, 22(7), 2731-2738.

Wang, C., Huang, W., Zhou, Y., He, L., He, Z., Chen, Z., … Lu, B. (2020). 3D printing of bone tissue engineering scaffolds. Bioactive Materials, 5(1), 82–91.

Wang, H., Fan, T., Zeng, Z., Chen, Z., Lu, M., Zhou, M., … Liu, X. (2024). Use of ozone oxidation in combination with deacetylation for improving the structure and gelation properties of konjac glucomannan. Food Chemistry, 453, 139599.

Wang, Le, Xiao, M., Dai, S., Song, J., Ni, X., Fang, Y., … Jiang, F. (2014). Interactions between carboxymethyl konjac glucomannan and soy protein isolate in blended films. Carbohydrate Polymers, 101, 136–145.

Wang, Lin, Mu, R.J., Li, Y., Lin, L., Lin, Z., & Pang, J. (2019). Characterization and antibacterial activity evaluation of curcumin loaded konjac glucomannan and zein nanofibril films. LWT, 113, 108293.

Wang, Y., Liu, J., & Liu, Y. (2023a). The effect of different ratios of starch and freeze–thaw treatment on the properties of konjac glucomannan gels. Gels, 9(2), 72.

Wang, M., Gu, J., Hao, Y., Qin, X., Yu, Y., & Zhang, H. (2023b). Adhesive, sustained-release, antibacterial, cytocompatible hydrogel-based nanofiber membrane assembled from polysaccharide hydrogels and functionalized nanofibers. Cellulose, 30(1), 323–337.

Wei, L., Ren, Y., Huang, L., Ye, X., Li, H., Li, J., Cao, J., & Liu, X. (2024). Quality, thermo-rheology, and microstructure characteristics of cubic fat substituted pork patties with composite emulsion gel composed of konjac glucomannan and soy protein isolate. Gels, 10(2), 111.

Wongpinta, T., Mianmit, N., Pothitan, R., Lumyai, P., & Mealim, S. (2024). Forecasting model based on morphological characteristics for yield of konjac (Amorphophallus muelleri Blume) planted in Tak province, Thailand . Agriculture and Natural Resources, 58, 353–362.

Xiao, J., Ji, Y., Gao, Z., Dai, Y., Li, X., Feng, Y., & You, R. (2024). Silk nanofibrous scaffolds assembled by natural polysaccharide konjac glucomannan. Journal of Applied Polymer Science, 141(8), e54981.

Xiong, G., Cheng, W., Ye, L., Du, X., Zhou, M., Lin, R., ... Cai, Y.-Z. (2009). Effects of konjac glucomannan on physicochemical properties of myofibrillar protein and surimi gels from grass carp (Ctenopharyngodon idella). Food Chemistry, 116(2), 413–418.

Xu, C., Yu, C., Yang, S., Deng, L., Zhang, C., Xiang, J., & Shang, L. (2023a). Effects of physical properties of konjac glucomannan on appetite response of rats. Foods, 12(4), 743.

Xu, S., Yan, S., You, J., & Wu, X. (2024). Antibacterial micelles-loaded carboxymethyl chitosan/oxidized konjac glucomannan composite hydrogels for enhanced wound repairing. ACS Applied Materials & Interfaces, 16(11), 13563–13572.

Xu, S., You, J., Yan, S., Zhu, L., & Wu, X. (2023b). Etamsylate loaded oxidized Konjac glucomannan-εpolylysine injectable hydrogels for rapid hemostasis and wound healing. Journal of Materials Chemistry B, 11(41), 9950–9960.

Xu, X., & Pang, J. (2021). Fabrication and characterization of composite biofilm of konjac glucomannan/sodium lignosulfonate/ε-polylysine with reinforced mechanical strength and antibacterial ability. Polymers, 13(19), 3367.

Yang, B., Chen, Y., Li, Z., Tang, P., Tang, Y., Zhang, Y., … Zhang, H. (2020). Konjac glucomannan/polyvinyl alcohol nanofibers with enhanced skin healing properties by improving fibrinogen adsorption. Materials Science and Engineering: C, 110, 110718.

Yang, J., Jiang, S., Zhu, S., Ren, W., Liang, H., Li, B., … Li, J. (2023). Konjac glucomannan/xanthan gum/sodium alginate composite hydrogel simulates fascial tissue by pre-stretching and moisture regulation. International Journal of Biological Macromolecules, 239, 124253.

Yang, Z., Yang, Y., Zhang, X., Fu, B., Xu, W., Xue, D., … Xie, Q. (2022). Construction of sodium alginate/konjac glucomannan/chitosan oligosaccharide/Zeolite P hydrogel microspheres loaded with potassium diformate for sustained intestinal bacterial inhibition. European Polymer Journal, 172, 111233.

Ye, S., Zhu, J., Shah, B.R., Abel Wend‐Soo, Z., Li, J., Zhan, F., … Li, B. (2022). Preparation and characterization of konjac glucomannan (KGM) and deacetylated KGM (Da‐KGM) obtained by sonication. Journal of the Science of Food and Agriculture, 102(10), 4333–4344.

Yuan, Y., Wang, L., Mu, R.J., Gong, J., Wang, Y., Li, Y., Ma, J., … Wu, C. (2018). Effects of konjac glucomannan on the structure, properties, and drug release characteristics of agarose hydrogels. Carbohydrate Polymers, 190, 196–203.

Yuan, Z., Cheng, J., Lan, G., & Lu, F. (2021). A cellulose/konjac glucomannan–based macroporous antibacterial wound dressing with synergistic and complementary effects for accelerated wound healing. Cellulose, 28, 5591–5609.

Zhai, X., Lin, D., Zhao, Y., Li, W., & Yang, X. (2018). Enhanced anti-obesity effects of bacterial cellulose combined with konjac glucomannan in high-fat diet-fed C57BL/6J mice. Food & Function, 9(10), 5260–5272.

Zhang, Y., Xie, B., & Gan, X. (2005). Advance in the applications of konjac glucomannan and its derivatives. Carbohydrate Polymers, 60(1), 27–31.

Zhang, Z., Zhang, Y., Tao, X., Wang, Y., Rao, B., & Shi, H. (2023). Effects of glucomannan supplementation on type II diabetes mellitus in humans: A meta-analysis. Nutrients, 15(3), 601.

Zhao, J., Zhang, D., Srzednicki, G., Kanlayanarat, S., & Borompichaichartkul, C. (2010). Development of a low-cost two-stage technique for production of low-sulphur purified konjac flour. International Food Research Journal, 17, 1113–1124.

Zhou, L., Xu, T., Yan, J., Li, X., Xie, Y., & Chen, H. (2020). Fabrication and characterization of matrineloaded konjac glucomannan/fish gelatin composite hydrogel as antimicrobial wound dressing. Food Hydrocolloids, 104, 105702.

Zhou, N., Zheng, S., Xie, W., Cao, G., Wang, L., & Pang, J. (2022). Konjac glucomannan: A review of structure, physicochemical properties, and wound dressing applications. Journal of Applied Polymer Science, 139(11), 51780.

Zhuang, K., Shu, X., & Xie, W. (2024). Konjac glucomannan-based composite materials: Construction, biomedical applications, and prospects. Carbohydrate Polymers, 344, 122503.

Zong, Q., Peng, X., Wu, H., Ding, Y., Ye, X., Gao, X., … Zhai, Y. (2024). Copper-gallate metal-organic framework encapsulated multifunctional konjac glucomannan microneedles patches for promoting wound healing. International Journal of Biological Macromolecules, 257, 128581.

Downloads

Published

2025-08-29

How to Cite

Trongtorkit, W., Kaewsritong, J., & Srikaeo, K. (2025). Konjac: A Versatile Plant for Utilization in Nutrition, Health and Environmental Sustainability. Journal of Food Health and Bioenvironmental Science, 18(2), 184–202. retrieved from https://li01.tci-thaijo.org/index.php/sdust/article/view/265883

Issue

Section

Review Articles