The Bioactive Composition, Antioxidant, and Antimicrobial Properties of Pink-Purple Edible Flowers in Thailand
Keywords:
Edible flowers, Total phenolic contents, Total flavonoid contents, Antioxidant activity, Antimicrobial propertiesAbstract
Edible flowers have been traditionally consumed for their nutritional, medicinal, and culinary benefits worldwide. This study investigates the bioactive composition, antioxidant potential, and antibacterial properties of five pink-purple edible flowers in Thailand: Antigonon leptopus Hook. & Arn., Plumeria obtusa L., Bougainvillea glabra Choisy, Ixora chinensis Lam., and Nelumbo nucifera Gaertn. The total phenolic content (TPC), total flavonoid content (TFC), and antioxidant activity (DPPH assay) were analyzed, along with antibacterial activity against Salmonella typhimurium, Bacillus cereus, Staphylococcus aureus, and Escherichia coli using the agar disc diffusion method. The results revealed significant variations in TPC, TFC and antioxidant activity among the tested flowers. N. nucifera exhibited the highest TPC (135.75 mg GAE/g dry extract), TFC (14.74 µg QE/g dry extract), and antioxidant capacity (127.37 µg Vit C/g dry extract), whereas B. glabra had the lowest values (12.19 mg GAE/g, 5.71 µg QE/g, and 49.44 µg Vit C/g, respectively). A similar trend was observed in antibacterial activity, where N. nucifera exhibited the most effective inhibition against S. typhimurium, B. cereus, S. aureus, and E. coli (1.02–1.22 cm inhibition zones), while B. glabra demonstrated the weakest antibacterial activity (0.00 cm against E. coli). Pearson correlation analysis further confirmed strong positive correlations between TPC and antioxidant activity (r = 0.660, p < 0.01), as well as TFC and antibacterial activity against E. coli (r = 0.758, p < 0.01). These findings indicate that phenolics and flavonoids play a major role in radical scavenging and antimicrobial mechanisms. This study provides new insights into the bioactive potential of flower extracts, highlighting N. nucifera as a promising natural antioxidant and antimicrobial agent for potential applications in functional foods and preservatives. Future studies should focus on identifying key bioactive compounds and optimizing extraction methods to maximize their therapeutic benefits.
References
Altemimi, A., Lakhssassi, N., Baharlouei, A., Watson, D.G., & Lightfoot, D.A. (2017). Phytochemicals: Extraction, isolation, and identification of bioactive compounds from plant extracts. Plants, 6(4), 42.
Arrigoni, R., Ballini, A., Jirillo, E., & Santacroce, L. (2024). Current view on major natural compounds endowed with antibacterial and antiviral effects. Antibiotics, 13(7), 603.
Arya, A., Al-Obaidi, M.M.J., Karim, R.B., Taha, H., Khan, A.K., Shahid, N., ... Mohd, M.A. (2015). Extract of Woodfordia fruticosa flowers ameliorates hyperglycemia, oxidative stress and improves β-cell function in streptozotocin–nicotinamide induced diabetic rats. Journal of Ethnopharmacology, 175, 229–240.
Bishayee, A., Patel, P.A., Sharma, P., Thoutireddy, S., & Das, N. (2022). Lotus (Nelumbo nucifera Gaertn.) and its bioactive phytocompounds: A tribute to cancer prevention and intervention. Cancers, 14(3), 529.
Bouyahya, A., Chamkhi, I., Balahbib, A., Rebezov, M., Shariati, M.A., Wilairatana, P., ... & El Omari, N. (2022). Mechanisms, anti-quorum-sensing actions, and clinical trials of medicinal plant bioactive compounds against bacteria: a comprehensive review. Molecules, 27(5), 1484.
Brahmi, F., Lounis, N., & Duez, P. (2022). Impact of growth sites on the phenolic contents and antioxidant activities of three algerian mentha species (M. pulegium L., M. rotundifolia (L.) Huds., and M. spicata L.). Frontiers in Pharmacology, 13, 886337.
Chaves, N., Santiago, A., & Alías, J.C. (2020). Quantification of the antioxidant activity of plant extracts: Analysis of sensitivity and hierarchization based on the method used. Antioxidants, 9(1), 76. https://doi.org/10.3390/antiox9010076
Czemmel, S., Stracke, R., Weisshaar, B., Cordon, N., Harris, N.N., Walker, A.R., … & Bogs, J. (2009). The grapevine R2R3-MYB transcription factor VvMYBF1 regulates flavonol synthesis in developing grape berries. Plant Physiology, 151(3), 1513–1530. https://doi.org/10.1104/pp.109.142059
Daglia, M. (2012). Polyphenols as antimicrobial agents. Current Opinion in Biotechnology, 23(2), 174–181. https://doi.org/10.1016/j.copbio.2011.08.007
Dai, J., & Mumper, R.J. (2010). Plant phenolics: extraction, analysis and their antioxidant and anticancer properties. Molecules, 15(10), 7313–7352.
Donadio, G., Mensitieri, F., Santoro, V., Parisi, V., Bellone, M.L., De Tommasi, N., … Dal Piaz, F. (2021). Interactions with microbial proteins driving the antibacterial activity of flavonoids. Pharmaceutics, 13(5), 660.
Efstratiou, E., Hussain, A.I., Nigam, P.S., Moore, J.E., Ayub, M.A., & Rao, J.R. (2012). Antimicrobial activity of Calendula officinalis petal extracts against fungi, as well as Gram-negative and Gram-positive clinical pathogens. Complementary Therapies in Clinical Practice, 18(3), 173–176.
Feduraev, P., Chupakhina, G., Maslennikov, P., Tacenko, N., & Skrypnik, L. (2019). Variation in phenolic compounds content and antioxidant activity of different plant organs from Rumex crispus L. and Rumex obtusifolius L. at different growth stages. Antioxidants, 8(7), 237.
Ghosh, S., Basu, S., Anbarasu, A., & Ramaiah, S. (2025). A Comprehensive review of antimicrobial agents against clinically important bacterial pathogens: Prospects for phytochemicals. Phytotherapy Research, 39(1), 138–161.
Gonçalves, F., Gonçalves, J.C., Ferrão, A., Correia, P., & Guiné, R. (2020). Evaluation of phenolic compounds and antioxidant activity in some edible flowers. Open Agriculture, 5, 857–870. https://doi.org/10.1515/opag-2020-0087
Hamzah, B., & Zubair, M.S. (2019). Traditional usages and phytochemical screenings of selected Zingiberaceae from central Sulawesi, Indonesia. Pharmacognosy Journal, 11(3), 505-510. https://doi.org/10.5530/pj.2019.11.80
Heatley, N.G. (1944). A method for the assay of penicillin. Biochemical Journal, 38(1), 61–65. https://doi.org/10.1042/bj0380061
Kabuki, T., Nakajima, H., Arai, M., Ueda, S., Kuwabara, Y., & Dosako, S. (2000). Characterization of novel antimicrobial compounds from mango (Mangifera indica L.) kernel seeds. Food Chemistry, 71(1), 61–66.
Kaisoon, O., Konczak, I., & Siriamornpun, S. (2012). Potential health enhancing properties of edible flowers from Thailand. Food Research International, 46(2), 563–571.
Kim, G.-C., Kim, J.-S., Kim, G.-M., & Choi, S.-Y. (2017). Anti-adipogenic effects of Tropaeolum majus (nasturtium) ethanol extract on 3T3-L1 cells. Food & Nutrition Research, 61(1), 1339555. https://doi.org/10.1080/16546628.2017.1339555
Ksouri, R., Falleh, H., Megdiche, W., Trabelsi, N., Mhamdi, B., Chaieb, K., … & Abdelly, C. (2009). Antioxidant and antimicrobial activities of the edible medicinal halophyte Tamarix gallica L. and related polyphenolic constituents. Food and Chemical Toxicology, 47(8), 2083–2091.
Li, A.-N., Li, S., Zhang, Y.-J., Xu, X.-R., Chen, Y.-M., & Li, H.-B. (2014). Resources and biological activities of natural polyphenols. Nutrients, 6(12), 6020–6047. https://doi.org/10.3390/nu6126020
Li, H.-Y., Yang, W.-Q., Zhou, X.-Z., Shao, F., Shen, T., Guan, H.-Y., Zheng, J., & Zhang, L.-M. (2022). Antibacterial and antifungal sesquiterpenoids: Chemistry, resource, and activity. Biomolecules, 12(9), 1271.
Li, K., Fan, H., Yin, P., Yang, L., Xue, Q., Li, X., … Liu, Y. (2018). Structure-activity relationship of eight high content flavonoids analyzed with a preliminary assign-score method and their contribution to antioxidant ability of flavonoids-rich extract from Scutellaria baicalensis shoots. Arabian Journal of Chemistry, 11(2), 159–170. https://doi.org/https://doi.org/10.1016/j.arabjc.2017.08.002
Liga, S., Paul, C., & Péter, F. (2023). Flavonoids: Overview of biosynthesis, biological activity, and current extraction techniques. Plants, 12(14), 2732.
Loizzo, M.R., Pugliese, A., Bonesi, M., Tenuta, M.C., Menichini, F., Xiao, J., … Tundis, R. (2016). Edible flowers: A rich source of phytochemicals with antioxidant and hypoglycemic properties. Journal of Agricultural and Food Chemistry, 64(12), 2467–2474.
Lu, Y., & Luthria, D. (2014). Influence of postharvest storage, processing, and extraction methods on the analysis of phenolic phytochemicals. In G.K. Jayprakasha, B.S. Patil, & F. Pellati (Eds.), Instrumental methods for the analysis and identification of bioactive molecules (ACS Symposium Series, Vol. 1185 (pp. 3–31). Washington, DC: American Chemical Society.
Luo, P., Ning, G., Zhao, J., & Bao, M. (2016). Disequilibrium of flavonol synthase and dihydroflavonol-4-reductase expression associated tightly to white vs. red color flower formation in plants. Frontiers in Plant Science, 6, 1257. https://doi.org/10.3389/fpls.2015.01257
Mak, Y.W., Chuah, L.O., Ahmad, R., & Bhat, R. (2013). Antioxidant and antibacterial activities of hibiscus (Hibiscus rosa-sinensis L.) and Cassia (Senna bicapsularis L.) flower extracts. Journal of King Saud University-Science, 25(4), 275–282.
Mallick, S.R., Hassan, J., Hoque, M.A., Sultana, H., Kayesh, E., Ahmed, M., ... Siddiqui, M.H. (2024). Color, proximate composition, bioactive compounds and antinutrient profiling of rose. Scientific Reports, 14(1), 21690.
Melillo, L. (1994). Diuretic plants in the paintings of Pompeii. American Journal of Nephrology, 14(4–6), 423–425. https://doi.org/10.1159/000168758
Mlcek, J., & Rop, O. (2011). Fresh edible flowers of ornamental plants – A new source of nutraceutical foods. Trends in Food Science & Technology, 22(10), 561–569. https://doi.org/https://doi.org/10.1016/j.tifs.2011.04.006
Moliner, C., Barros, L., Dias, M.I., López, V., Langa, E., Ferreira, I.C.F.R., & Gómez-Rincón, C. (2018). Edible flowers of Tagetes erecta L. as functional ingredients: phenolic composition, antioxidant and protective effects on Caenorhabditis elegans. Nutrients, 10(12), 2002.
Mukherjee, P.K., Maity, N., Nema, N.K., & Sarkar, B.K. (2011). Bioactive compounds from natural resources against skin aging. Phytomedicine, 19(1), 64–73. https://doi.org/10.1016/j.phymed.2011.10.003
Nabi, N., & Shrivastava, M. (2016). Estimation of total flavonoids and antioxidant activity of Spilanthes acmella Leaves. UK Journal of Pharmaceutical and Biosciences, 4, 29–34. https://doi.org/10.20510/ukjpb/4/i6/134657
Navarro-González, I., González-Barrio, R., García-Valverde, V., Bautista-Ortín, A.B., & Periago, M.J. (2014). Nutritional composition and antioxidant capacity in edible flowers: Characterisation of phenolic compounds by HPLC-DAD-ESI/MSn. International Journal of Molecular Sciences, 16(1), 805–822.
Nutho, B., & Tungmunnithum, D. (2023). Exploring major flavonoid phytochemicals from Nelumbo nucifera Gaertn. as potential skin anti-aging agents: In silico and in vitro evaluations. International Journal of Molecular Sciences, 24(23), 16571.
Oh, S. Y., Du Shin, H., Kim, S.J., & Hong, J. (2008). Rapid determination of floral aroma compounds of lilac blossom by fast gas chromatography combined with surface acoustic wave sensor. Journal of Chromatography A, 1183(1–2), 170–178.
Pires, T., Barros, L., Santos Buelga, C., & Ferreira, I. (2019). Edible flowers: Emerging components in the diet. Trends in Food Science & Technology, 93. https://doi.org/10.1016/j.tifs.2019.09.020
Platzer, M., Kiese, S., Tybussek, T., Herfellner, T., Schneider, F., Schweiggert-Weisz, U., ... Eisner, P. (2022). Radical scavenging mechanisms of phenolic compounds: A quantitative structure-property relationship (QSPR) study. Frontiers in Nutrition, 9, 882458.
Popescu, D.I., Botoran, O.R., & Cristea, R.M.I. (2025). Investigation of phytochemical composition, antioxidant and antibacterial activity of five red flower extracts. Antioxidants, 14(2), 151.
Rachkeeree, A., Kantadoung, K., Suksathan, R., Puangpradab, R., Page, P.A., & Sommano, S.R. (2018). Nutritional compositions and phytochemical properties of the edible flowers from selected Zingiberaceae found in Thailand. Frontiers in Nutrition, 5, 3.
Ren, X., Chen, H., Wang, H., Wang, Y., Huang, C., & Pan, H. (2024). Advances in the pharmacological effects and mechanisms of Nelumbo nucifera Gaertn. extract Nuciferine. Journal of Ethnopharmacology, 331, 118262.
Saeed, N., Khan, M.R., & Shabbir, M. (2012). Antioxidant activity, total phenolic and total flavonoid contents of whole plant extracts Torilis leptophylla L. BMC Complementary and Alternative Medicine, 12, 1–12. https://doi.org/10.1186/1472-6882-12-221
Salih, A.M., Al-Qurainy, F., Nadeem, M., Tarroum, M., Khan, S., Shaikhaldein, H.O., ... Alkahtani, J. (2021). Optimization method for phenolic compounds extraction from medicinal plant (Juniperus procera) and phytochemicals screening. Molecules, 26(24), 7454. https://doi.org/10.3390/molecules26247454
Sandoval-Yañez, C., Mascayano, C., & Martínez-Araya, J. I. (2018). A theoretical assessment of antioxidant capacity of flavonoids by means of local hyper–softness. Arabian Journal of Chemistry, 11(4), 554–563. https://doi.org/https://doi.org/10.1016/j.arabjc.2017.10.011
Scalbert, A. (1991). Antimicrobial properties of tannins. Phytochemistry, 30(12), 3875–3883.
Schmidt, T.J., Khalid, S.A., Romanha, Á.J., Alves, T.M. de A., Biavatt, M.W., Brun, R., Da Costa, Fb., … Ferreira, V.F. (2012). The potential of secondary metabolites from plants as drugs or leads against protozoan neglected diseases-part II. Current Medicinal Chemistry, 19(14), 2176–2228.
Shamsudin, N.F., Ahmed, Q.U., Mahmood, S., Ali Shah, S.A., Khatib, A., Mukhtar, S., … Zakaria, Z.A. (2022). Antibacterial effects of flavonoids and their structure-activity relationship study: A comparative interpretation. Molecules, 27(4), 1149.
Sharma, B.R., Gautam, L.N.S., Adhikari, D., & Karki, R. (2017). A comprehensive review on chemical profiling of Nelumbo nucifera: Potential for drug development. Phytotherapy Research, 31(1), 3–26.
Shi, P., Du, W., Wang, Y., Teng, X., Chen, X., & Ye, L. (2019). Total phenolic, flavonoid content, and antioxidant activity of bulbs, leaves, and flowers made from Eleutherine bulbosa (Mill.) Urb. Food Science & Nutrition, 7(1), 148–154.
Shrestha, P.M., & Dhillion, S.S. (2006). Diversity and traditional knowledge concerning wild food species in a locally managed forest in Nepal. Agroforestry Systems, 66, 55–63.
Silhavy, T.J., Kahne, D., & Walker, S. (2010). The bacterial cell envelope. Cold Spring Harbor Perspectives in Biology, 2(5), a000414.
Song, M., Liu, Y., Li, T., Liu, X., Hao, Z., Ding, S., … Shen, J. (2021). Plant natural flavonoids against multidrug resistant pathogens. Advanced Science, 8(15), 2100749.
Takahashi, J.A., Rezende, F.A.G.G., Moura, M.A.F., Dominguete, L.C.B., & Sande, D. (2020). Edible flowers: bioactive profile and its potential to be used in food development. Food Research International, 129, 108868. https://doi.org/https://doi.org/10.1016/j.foodres.2019.108868
Tian, F., Li, B., Ji, B., Yang, J., Zhang, G., Chen, Y., . . . Luo, Y. (2009). Antioxidant and antimicrobial activities of consecutive extracts from Galla chinensis: The polarity affects the bioactivities. Food Chemistry, 113(1), 173–179.
Tian, J., Han, Z., Zhang, J., Hu, Y., Song, T., & Yao, Y. (2015). The balance of expression of dihydroflavonol 4-reductase and flavonol synthase regulates flavonoid biosynthesis and red foliage coloration in crabapples. Scientific Reports, 5(1), 12228. https://doi.org/10.1038/srep12228
Tiwari, U., & Cummins, E. (2013). Factors influencing levels of phytochemicals in selected fruit and vegetables during pre- and post-harvest food processing operations. Food Research International, 50(2), 497–506. https://doi.org/https://doi.org/10.1016/j.foodres.2011.09.007
Todorov, S.D., de Almeida, B.M., Lima, E.M.F., Fabi, J.P., Lajolo, F.M., & Hassimotto, N.M.A. (2025). Phenolic compounds and bacteriocins: Mechanisms, interactions, and applications in food preservation and safety. Molecular Nutrition & Food Research, e202400723.
Tungmunnithum, D., Drouet, S., & Hano, C. (2022). Phytochemical diversity and antioxidant potential of natural populations of Nelumbo nucifera Gaertn. throughout the floristic regions in Thailand. Molecules, 27(3), 681.
Villaruz, J.I., Yao, K.B.P., Calanasan, C.A., Matias, R.R., Pagcatipunan, R.S., ... Vilela, G.C. (2023). Total phenolic and flavonoid content and in vitro antioxidant activity of selected herbal products using oxygen radical absorbance capacity, multi-radical (ORAC MR5) assays. Philippine Journal of Science, 152(1).
Wan, H., Yu, C., Han, Y., Cheng, T., & Zhang, Q. (2019). Determination of flavonoids and carotenoids and their contributions to various colors of rose cultivars (Rosa spp.). Frontiers in Plant Science, 10, 429038.
Wang, Z., Li, Y., Ma, D., Zeng, M., Wang, Z., Qin, F., Chen, J., Christian, M., & He, Z. (2023). Alkaloids from lotus (Nelumbo nucifera): Recent advances in biosynthesis, pharmacokinetics, bioactivity, safety, and industrial applications. Critical Reviews in Food Science and Nutrition, 63(21), 4867–4900.
Wongsa, P., & Rattanapanone, N. (2021). 1H‐NMR analysis, antioxidant activity, and α‐amylase and α‐glucosidase inhibitory potential of ten common Thai edible flowers. Journal of the Science of Food and Agriculture, 101(10), 4380–4389.
Ye, L.-H., He, X.-X., You, C., Tao, X., Wang, L.-S., Zhang, M.-D., Zhou, Y.-F., & Chang, Q. (2018). Pharmacokinetics of nuciferine and N-nornuciferine, two major alkaloids from Nelumbo nucifera leaves, in rat plasma and the brain. Frontiers in Pharmacology, 9, 902.
Zhang, P., Li, J., Shi, J., Cheng, Z., & Wu, T. (2024). structurally diverse bisbenzylisoquinoline alkaloids with antiadipogenic activity through PPARγ downregulation from the embryo of Nelumbo nucifera seeds. Journal of Natural Products, 87(4), 1013–1022.
Zhang, Q., Cheng, Z., Fan, Y., Zhang, D., Wang, M., Zhang, J., ... Long, C. (2023). Ethnobotanical study on edible flowers in Xishuangbanna, China. Journal of Ethnobiology and Ethnomedicine, 19(1), 43. https://doi.org/10.1186/s13002-023-00608-1
Zhang, Y., Hu, X., & Zou, L.-Q. (2024). Flavonoids as therapeutic agents for epilepsy: Unveiling anti-inflammatory and antioxidant pathways for novel treatments. Frontiers in Pharmacology, 15, 1457284.
Zheng, J., Yu, X., Maninder, M., & Xu, B. (2018). Total phenolics and antioxidants profiles of commonly consumed edible flowers in China. International Journal of Food Properties, 21(1), 1524–1540. https://doi.org/10.1080/10942912.2018.1494195
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Journal of Food Health and Bioenvironmental Science

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.




