Acetic acid bacteria: A group of potential microorganisms for conversions of biological wastes

Main Article Content

Issara Poljungreed


Biological wastes, occurred during food and other industries process, have feasibility to be promising substrates for microbial cultivation. The wastes could be value added by the microbial conversion. Acetic acid bacteria (AAB) are well-known as potential microorganisms for producing high-value products using low-value substrates. Oxidative cultivation processes of acetic acid bacteria enable the use of biological wastes to produce high-value chemicals such as acetic acid, gluconic acid, dihydroxyacetone, and bacterial cellulose which could be further used in many applications. Acetobacter and Gluconobacter are potential candidates for the purposes. This review aims to provide potential species of AAB with capability of using biological wastes as substrate for producing high value products.


Download data is not yet available.

Article Details

Review Articles


Aydin, Y. A. and Aksoy, N. D. (2009). Isolation of cellulose producing bacteria from wastes of vinegar fermentation. In Proceedings of the World Congress on Engineering and Computer Science, San Francisco, USA.

Bae, S. O. and Shoda, M. (2005). Production of bacterial cellulose by Acetobacter xylinum BPR2001 using molasses medium in a jar fermentor. Applied Microbiology and Biotechnology, 67(1), 45-51.

Campbell, N. A. and Reece, J. B. (2001). Biology, Pearson Education, Inc., San Francisco, USA.

Cheng, Z., Yang, R., and Liu, X. (2017). Production of bacterial cellulose by Acetobacter xylinum through utilizing acetic acid hydrolysate of bagasse as low-cost carbon source. BioResources, 12(1), 1190-1200.

Costa, A. F. S., Almeida, F. C. G., Vinhas, G. M., and Sarubbo, L. A. (2017). Production of bacterial cellulose by Gluconacetobacter hansenii using corn steep liquor as nutrient sources. Frontiers in Microbiology, 8, 1-12.

da Silva, G. P., Mack, M., and Contiero, J. (2009). Glycerol: A promising and abundant carbon source for industrial microbiology. Biotechnology Advances, 27(1), 30-39.

Dhillon, G. S., Oberoi, H. S., Kaur, S., Bansal, S., and Brar, S. K. (2011). Value-addition of agricultural wastes for augmented cellulase and xylanase production through solid-state tray fermentation employing mixed-culture of fungi. Industrial Crops and Products, 34(1), 1160-1167.

Dikshit, P. K. and Moholkar, V. S. (2016). Kinetic analysis of dihydroxyacetone production from crude glycerol by immobilized cells of Gluconobacter oxydans MTCC 904. Bioresource Technology, 216, 948-957.

El-Sayed, S. A., Zaki, M. T., and Abou El-Khair, A. W. (1994). Bioconversion of sugarcane bagasse into a protein-rich product by white rot fungus. Resources, Conservation and Recycling, 12(3), 195-200.

Eskin, N., Vessey, K., and Tian, L. (2014). Research progress and perspectives of nitrogen fixing bacterium,Gluconacetobacter diazotrophicus, in monocot plants. International Journal of Agronomy, 1-13.

Freitas, F., Alves, V. D., and Reis, M. A. M. (2011). Advances in bacterial exopolysaccharides: From production to biotechnological applications. Trends in Biotechnology, 29(8), 388-398.

Fuentes-Ramirez, L. E., Jimenez-Salgado, T., Abarca-Ocampo, I. R., and Caballero-Mellado, J. (1993). Acetobacter diazotrophicus, an indoleacetic acid producing bacterium isolated from sugarcane cultivars of México. Plant and Soil, 154(2), 145-150.

García-García, I., Cañete-Rodríguez, A. M., Santos-Dueñas, I. M., Jiménez-Hornero, J. E., Ehrenreich, A., Liebl, W., García-Martínez, T., and Mauricio, J. C. (2017). Biotechnologically relevant features of gluconic acid production by acetic acid bacteria. Acetic Acid Bacteria, 6(1).

Garg, S. K. and Neelakantan, S. (1982). Bioconversion of sugar cane bagasse for cellulase enzyme and microbial protein production. International Journal of Food Science & Technology, 17(2), 271-279.

Ha, J. H., Shah, N., Ul-Islam, M., and Park, J. K. (2011). Potential of the waste from beer fermentation broth for bio-ethanol production without any additional enzyme, microbial cells and carbohydrates. Enzyme and Microbial Technology, 49(3), 298-304.

Hashizume, T., Yamagami, T., and Sasaki, Y. (1967). Constituents of cane molasses Part II. separation and identification of the phenolic compounds. Agricultural and Biological Chemistry, 31(3), 324-329.

Hekmat, D., Bauer, R., and Fricke, J. (2003). Optimization of the microbial synthesis of dihydroxyacetone from glycerol with Gluconobacter oxydans. Bioprocess and Biosystems Engineering, 26(2), 109-116.

Hernawan, Maryana, R., Pratiwi, D., Wahono, S. K., Darsih, C., Hayati, S. N., Poeloengasih, C. D., Nisa, K., Indrianingsih, A. W., Prasetyo, D. J., Jatmiko, T. H., Kismurtono, M., and Rosyida, V. T. (2017). Bioethanol production from sugarcane bagasse by simultaneous sacarification and fermentation using Saccharomyces cerevisiae. In America Institute of Physics Conference Proceedings, 1823(1).

Heuzé V., Tran G., Archimède H., Renaudeau D., Lessire M., and Lebas F. (2015). Sugarcane molasses. Feedipedia, a programme by INRA, CIRAD, AFZ and FAO. https://www.feedipedia. org/node/561 Last updated on October 9, 2015.

Hubert, O. (1963). Molasses, Biotechnologie-Kempe GmbH (2006), Berlin, Germany.

Kasim, N. and Rahman, N. A. B. D. (2016). Design and production control of biocellulose from Acetobacter xylinum. Indian Journal of Science and Technology, 9(21).

Li, Y., He, D., Niu, D., and Zhao, Y. (2015). Acetic acid production from food wastes using yeast and acetic acid bacteria micro-aerobic fermentation. Bioprocess and BiosystemsEngineering, 38(5), 863-869.

Liu, Y.-P., Sun, Y., Tan, C., Li, H., Zheng, X.-J., Jin, K.-Q., and Wang, G. (2013). Efficient production of dihydroxyacetone from biodiesel-derived crude glycerol by newly isolated Gluconobacter frateurii. Bioresource Technology, 142, 384-389.

Lu, L. (2013). Gluconic and xylonic acid production from lignocellulosic biomass by Gluconobacter oxydans.Department Forestry and Wildlife Sciences, Master of Science (p. 91). Auburn, Alabama: Auburn University.

Mamlouk, D. and Gullo, M. (2013). Acetic Acid bacteria: physiology and carbon sources oxidation. Indian Journal of Microbiology, 53(4), 377-384.

Mohammad, S. M., Rahman, N. A., Khalil, M. S., and Abdullah, S. R. S. (2014). An overview of biocellulose production using Acetobacterxylinum culture. Advances in Biological Research, 8(6), 307-313.

Möritz, V. R., Nelson, L. S., Andrés, F. V. R., and Erika, P. F. C. (2013). Cellulose production by Gluconacetobacter kakiaceti GM5 in two batch process using vinasse as culture media. Water Science & Technology, 68(5), 1079- 1084.

Németh, Á. and Vidra, A. (2017). Bio-produced acetic acid: A Review. Periodica Polytechnica Chemical Engineering, 62(3), 245-256.

Nitayavardhana, S. and Khanal, S. K. (2011). Biodiesel-derived crude glycerol bioconversion to animal feed: A sustainable option for a biodiesel refinery. Bioresource Technology, 102(10), 5808-5814.

Park, I., Kim, I., Kang, K., Sohn, H., Rhee, I., Jin, I., and Jang, H. (2010). Cellulose ethanol production from waste newsprint by simultaneous saccharification and fermentation using Saccharomyces cerevisiae KNU5377. Process Biochemistry, 45(4), 487-492.

Patel, R. and Pandya, H. N. (2015). Production of acetic acid from molasses by fermentation process. International Journal of Advance Research and Innovative Ideas in Education, 1(2), 58- 60.

Pérez, R. (1995). Molasses. In Tropical Feeds and Feeding Systems, First FAO Electronic Conference, 233-239.

Poljungreed, I. and Boonyarattanakalin, S. (2017). Dihydroxyacetone production by Gluconobacter frateurii in a minimum medium using fed-batch fermentation. Journal of Chemical Technology & Biotechnology, 92(10), 2635-2641.

Poonam, N., Ashok, P., and A., P. K. (1987). Mixed cultures fermentation for bioconversion of whole bagasse into microbial protein. Journal of Basic Microbiology, 27(6), 323-327.

Preethi, K., Maha Lakshmi G., Mridul Umesh, Priyanka K., and B., T. (2017). Fruit peels: A potential substrate for acetic acid using Acetobacter aceti. International Journal of Applied Research, 3(4), 286-291.

Pyle, D. J., Garcia, R. A., and Wen, Z. (2008). Producing docosahexaenoic acid (DHA)-rich algae from biodiesel-derived crude glycerol: Effects of impurities on DHA production and algal biomass composition. Journal of Agricultural and Food Chemistry, 56(11), 3933-3939.

Quan, Z.-X., Jin, Y.-S., Yin, C.-R., Lee, J. J., and Lee, S.-T. (2005). Hydrolyzed molasses as an external carbon source in biological nitrogen removal. Bioresource Technology, 96(15), 1690-1695.

Raspor, P. and Goranovic, D. (2008). Biotechnological applications of acetic acid bacteria. Critical Reviews in Biotechnology, 28(2), 101-124.

Sainz, F., Navarro, D., Mateo, E., Torija, M. J., and Mas, A. (2016). Comparison of D-gluconic acid production in selected strains of acetic acid bacteria. International Journal of Food Microbiology, 222, 40-47.

Santis-Navarro, A., Gea, T., Barrena, R., and Sánchez, A. (2011). Production of lipases by solid state fermentation using vegetable oil-refining wastes. Bioresource Technology, 102(21), 10080-10084.

Srivastava, S. and Srivastava, P. S. (2003). Bacteria and life processes-II metabolism. In Understanding Bacteria, pp. 151-222. Springer Netherlands,

Stasiak-Różańska, L., Błażejak, S., Gientka, I.,Bzducha-Wróbel, A., and Lipińska, E. (2017). Utilization of a waste glycerol fraction using and reusing immobilized Gluconobacter oxydans ATCC 621 cell extract. Electronic Journal of Biotechnology, 27, 44-48.

Veana, F., Martínez-Hernández, J. L., Aguilar, C. N., Rodríguez-Herrera, R., and Michelena, G.(2014). Utilization of molasses and sugar cane bagasse for production of fungal invertase in solid state fermentation using Aspergillus niger GH1. Brazilian Journal of Microbiology, 45(2), 373-377.

Wang, Q., Wang, X., Wang, X., and Ma, H. (2008). Glucoamylase production from food waste by Aspergillus niger under submerged fermentation. Process Biochemistry, 43(3), 280-286.

Wright, M., Lima, I., and Bigner, R. (2016). Microbial and physicochemical properties of sugarcane bagasse for potential conversion to value-added products. International Sugar Journal, 118(1410), 10-18.

Yakushi, T. and Matsushita, K. (2010). Alcohol dehydrogenase of acetic acid bacteria: structure, mode of action, and applications in biotechnology. Applied Microbiology and Biotechnology, 86(5), 1257-1265.

Yamada, Y., Hoshino, K., and Ishikawa, T. (1997). The phylogeny of acetic acid bacteria based on the partial sequences of 16S ribosomal RNA: The elevation of the subgenus Gluconoacetobacter to the generic level. Bioscience, Biotechnology, and Biochemistry, 61(8), 1244-1251.

Yanti, N. A., Ahmad, S. W., Ambardini, S., Muhiddin, N. H., and Sulaiman, L. O. I. (2017). Screening of acetic acid bacteria from pineapple waste for bacterial cellulose production using sago liquid waste. Biosaintifika J Journal of Biology & Biology Education, 9(3), 387-393.

Zheng, X.-j., Jin, K.-q., Zhang, L., Wang, G., and Liu, Y.-P. (2016). Effects of oxygen transfer coefficient on dihydroxyacetone production from crude glycerol. Brazilian Journal of Microbiology, 47, 129-135.

Zhou, X., Zhou, X., Xu, Y., and Yu, S. (2016). Improving the production yield and productivity of 1, 3-dihydroxyacetone from glycerol fermentation using Gluconobacter oxydans NL71 in a compressed oxygen supply-sealed and stirred tank reactor (COS-SSTR). Bioprocess and Biosystems Engineering, 39(8), 1315-1318.