Production of D-tagatose: A review with emphasis on subcritical fluid treatment
Main Article Content
Abstract
D-Tagatose is gaining much interests as a sugar substitute and a functional ingredient. Development of tagatose production process has been investigated by researcher around the world for more than 30 years. Chemical and enzymatic processes are currently employed for commercial scale production but the cost is still an obstacle. In this review, all potential methods for producing tagatose were summarized with the recent publications. In addition, a novel method, subcritical fluid treatment was also introduced and discussed for its potential.
Downloads
Download data is not yet available.
Article Details
How to Cite
Khuwijitjaru, P., Milasing, N., & Adachi, S. (2018). Production of D-tagatose: A review with emphasis on subcritical fluid treatment. Science, Engineering and Health Studies, 12(3), 159–167. https://doi.org/10.14456/sehs.2018.15
Section
Review Articles
References
Adachi, S. (1958). Formation of lactulose and tagatose from lactose in strongly heated milk. Nature, 181(4612), 840-841.
Atkinson, F. S., Foster-Powell, K., and Brand-Miller, J. C. (2008). International tables of glycemic index and glycemic load values: 2008. Diabetes Care, 31(12), 2281-2283.
Beadle, J. R., Saunders, J. P., and Wajda Jr., T. J. (1989). Process for manufacturing tagatose.US5002612A.
Beerens, K., Desmet, T., and Soetaert, W. (2012). Enzymes for the biocatalytic production of rare sugars. Journal of Industrial Microbiology & Biotechnology, 39(6), 823-834.
Belitz, H.-D., Grosch, W., and Schieberle, P. (2009). Food Chemistry, Springer-Verlag, Heidelberg.
Bertelsen, H., Jensen, B. B., and Buemann, B. (1999). D-Tagatose - A novel low-calorie bulk sweetener
with prebiotic properties. In Low-Calories Sweeteners: Present and Future (Corti, A., ed.), pp. 98-109. Karger, Basel.
Dijkmans, J., Gabriëls, D., Dusselier, M., de Clippel, F., Vanelderen, P., Houthoofd, K., Malfliet, A.,Pontikes, Y., and
Sels, B. F. (2013). Productive sugar isomerization with highly active Sn in dealuminated β zeolites. Green Chemistry, 15(10), 2777-2785.
Dominique, T., Jean-Louis, B., Barbara, B., Susan, F.- T., Marina, H., Ildico, H.-E. K., Inge, M., J., M. H., Androniki, N., Grażyna, N., Kristina, P.,Yolanda, S., Alfonso, S., Anders, S., Martin, S.,Daniel, T., Hendrik, V. L., Marco, V., Peter, W., and Monika, N.-B. (2016). Scientific Opinion on the energy conversion factor of D-tagatose for labelling purposes. EFSA Journal, 14(11), e04630.
Drabo, P. and Delidovich, I. (2018). Catalytic isomerization of galactose into tagatose in the presence of bases and Lewis acids. Catalysis Communications, 107, 24-28.
El Khadem, H. S., Ennifar, S., and Isbell, H. S. (1989). Evidence of stable hydrogen-bonded ions during isomerization of hexoses in alkali. Carbohydrate Research, 185(1), 51-59.
Espinosa, I. and Fogelfeld, L. (2010). Tagatose: From a sweetener to a new diabetic medication? Expert Opinion on Investigational Drugs, 19(2), 285-294.
Gao, D.-M., Kobayashi, T., and Adachi, S. (2015a). Production of rare sugars from common sugars in subcritical aqueous ethanol. Food Chemistry, 175, 465-470.
Gao, D.-M., Kobayashi, T., and Adachi, S. (2015b). Solubility of D-galactose, D-talose, and Dtagatose in aqueous ethanol at low temperature. Food Science and Technology Research, 21(6), 801-803.
Gao, D. M., Kobayashi, T., and Adachi, S. (2015c). Kinetic analysis for the isomerization of glucose, fructose, and mannose in subcritical aqueous ethanol. Bioscience, Biotechnology and Biochemistry, 79(6), 1005-1010.
Gao, D. M., Kobayashi, T., and Adachi, S. (2015d). Kinetic effect of alcohols on hexose isomerization under subcritical aqueous conditions. Chemical Engineering Research and Design, 104, 723-729.
Gao, D. M., Kobayashi, T., and Adachi, S. (2015e). Production of rare sugars from common sugars in subcritical aqueous ethanol. Food Chemistry, 175, 465-470.
Gao, D. M., Kobayashi, T., and Adachi, S. (2015f). Promotion or suppression of glucose isomerization in subcritical aqueous straightand branched-chain alcohols. Bioscience, Biotechnology and Biochemistry, 79(3), 470-474.
Gao, D. M., Kobayashi, T., and Adachi, S. (2016). Production of keto-disaccharides from aldodisaccharides
in subcritical aqueous ethanol.Bioscience, Biotechnology and Biochemistry, 80(5), 998-1005.
Gao, D. M., Kobayashi, T., and Adachi, S. (2017). Promoted isomerization of aldoses to ketoses in subcritical aqueous acetonitrile. Canadian Journal of Chemical Engineering, 95(2), 359-363.
Granström, T. B., Takata, G., Tokuda, M., and Izumori, K. (2004). Izumoring: A novel and complete strategy for bioproduction of rare sugars.Journal of Bioscience and Bioengineering, 97(2), 89-94.
Guerrero-Wyss, M., Durán Agüero, S., and Angarita Dávila, L. (2018). D-Tagatose is a promising sweetener to control glycaemia: A new functional food. BioMed Research International 2018.
Guo, Q., An, Y., Yun, J., Yang, M., Magocha, T. A.,Zhu, J., Xue, Y., Qi, Y., Hossain, Z., Sun, W., and Qi, X. (2018). Enhanced D-tagatose production by spore surface-displayed Larabinose isomerase from isolated Lactobacillus brevis PC16 and biotransformation. Bioresource Technology, 247, 940-946.
Irina, D., and Regina, P. (2016). Catalytic isomerization of biomass-derived aldoses: A review.ChemSusChem, 9(6), 547-561.
Jayamuthunagai, J., Gautam, P., Srisowmeya, G., and Chakravarthy, M. (2017a). Biocatalytic production of D-tagatose: A potential rare sugar with versatile applications. Critical Reviews in Food Science and Nutrition, 57(16), 3430-3437.
Jayamuthunagai, J., Srisowmeya, G., Chakravarthy, M., and Gautam, P. (2017b). D-Tagatose production by permeabilized and immobilized Lactobacillus plantarum using whey permeate.Bioresource Technology, 235, 250-255.
Khuwijitjaru, P. (2016). Utilization of plant-based agricultural waste by subcritical water treatment Japan Journal of Food Engineering, 17(2), 33-39.
Khuwijitjaru, P., Nualchan, P., and Adachi, S. (2007). Foaming and emulsifying properties of rice bran extracts obtained by subcritical water treatment.Silpakorn University Science and Technology Journal, 1(1), 7-12.
Lamothe, L. M., Lê, K.-A., Samra, R. A., Roger, O.,Green, H., and Macé, K. (2017). The scientific basis for healthful carbohydrate profile. Critical Reviews in Food Science and Nutrition, 1-13.
Lee, S.-H., Hong, S.-H., Kim, K.-R., and Oh, D.-K. (2017). High-yield production of pure tagatose from fructose by a three-step enzymatic cascade reaction. Biotechnology Letters, 39(8), 1141-1148.
Levin, G. V. (2002). Tagatose, the new GRAS sweetener and health product. Journal of Medicinal Food, 5(1), 23-36.
Levin, G. V., Zehner, L. R., Saunders, J. P., and Beadle, J. R. (1995). Sugar substitutes: their energy values, bulk characteristics, and potential health benefits. The American Journal of Clinical Nutrition, 62(5), 1161S-1168S.
Lu, J., Boughner, E. C., Liotta, C. L., and Eckert, C. A. (2002). Nearcritical and supercritical ethanol as a benign solvent: polarity and hydrogenbonding.Fluid Phase Equilibria, 198(1), 37-49.
Oh, D.-K. (2007). Tagatose: Properties, applications, and biotechnological processes. Applied Microbiology and Biotechnology, 76(1), 1.
Park, C., and Lee, J.-S. (2013). Mini Review: Natural ingredients for diabetes which are approved by Korean FDA. Biomedical Research, 24(1), 164-169.
Patel, M. J., Akhani, R. C., Patel, A. T., Dedania, S.R., and Patel, D. H. (2017). A single and two step isomerization process for D-tagatose and L-ribose bioproduction using L-arabinose somerase and D-lyxose isomerase. Enzyme and Microbial Technology, 97, 27-33.
Pigman, W., and Horton, D., eds. (1972). The Carbohydrates: Chemistry and Biochemistry,Academic Press, New York and London.
Sha, F., Zheng, Y., Chen, J., Chen, K., Cao, F., Yan, M., and Ouyang, P. (2018). D-Tagatose manufacture through bio-oxidation of galactitol derived from waste xylose mother liquor. Green Chemistry, 20(10), 2382-2391.
Shin, K.-C., Sim, D.-H., Seo, M.-J., and Oh, D.-K. (2016). Increased production of food-grade D-tagatose from D-galactose by permeabilized and immobilized cells of Corynebacterium glutamicum, a GRAS host, expressing D-galactose isomerase from Geobacillus thermodenitrificans. Journal of Agricultural and Food Chemistry, 64(43), 8146-8153.
Skytte, U. P. (2006). Tagatose. In Sweeteners and Sugar Alternatives in Food Technology (Mitchell,H., ed.), pp. 262-294. Blackwell Publishing, Oxford, UK.
Soisangwan, N., Gao, D. M., Kobayashi, T.,Khuwijitjaru, P., and Adachi, S. (2016). Kinetic analysis for the isomerization of cellobiose to cellobiulose in subcritical aqueous ethanol. Carbohydrate Research, 433, 67-72.
Soisangwan, N., Gao, D. M., Kobayashi, T., Khuwijitjaru, P., and Adachi, S. (2017a). Production of lactulose from lactose in subcritical aqueous ethanol. Journal of Food Process Engineering, 40(2).
Soisangwan, N., Khuwijitjaru, P., Kobayashi, T., and Adachi, S. (2017b). Kinetic analysis of lactulose production from lactose in subcritical aqueous ethanol. Food Science and Technology Research, 23(1), 45-49.
Stanhope, K. L. (2016). Sugar consumption, metabolic disease and obesity: The state of the controversy. Critical Reviews in Clinical Laboratory Sciences, 53(1), 52-67.
Troyano, E., Martinez-Castro, I., and Olano, A. (1992). Kinetics of galactose and tagatose formation during heat-treatment of milk. Food Chemistry, 45(1), 41-43.
Usuki, C., Kimura, Y., and Adachi, S. (2007). Isomerization of hexoses in subcritical water. Food Science and Technology Research, 13(3), 205-209.
Vera, C., and Illanes, A. (2016). Lactose-derived nondigestible oligosaccharides and other high added-value products. In Lactose-Derived Prebiotics: A Process Perspective, pp. 87-110.Academic Press, San Diego.
Vuorinen, T., and Sjöström, E. (1982). Kinetics of alkali-catalyzed isomerization of D-glucose and D-fructose in ethanol-water solutions. Carbohydrate Research, 108(1), 23-29.
Wiboonsirikul, J., and Adachi, S. (2008). Extraction of functional substances from agricultural products or by-products by subcritical water treatment. Food Science and Technology Research, 14(4), 319-328.
Williams, L. A. (2015). Trending down: Fat, sugar,sodium. Food Technology, 69, 22-30.
Xu, W., Zhang, W., Zhang, T., Jiang, B., and Mu, W. (2018). L-Arabinose isomerases: Characteristics,modification, and application. Trends in Food Science & Technology, 78, 25-33.
Yang, S. J., Kim, Y. H., Kim, S. B., Park, S. W.,Park, I. H., Kim, M. H., and Lee, Y. M. (2013). Production method for
tagatose.US20160138053A1.
Yang, S. J., Lee, Y. M., Park, I. H., Lee, C.-H., Cho,H. K., Kim, S. B., Kim, Y. H., and Park, S. W. (2018). Hexuronatec4-epimerase variant having improved D-tagatose conversion activity, and d-tagatose production method using same. WO2018021893 (A1).
Atkinson, F. S., Foster-Powell, K., and Brand-Miller, J. C. (2008). International tables of glycemic index and glycemic load values: 2008. Diabetes Care, 31(12), 2281-2283.
Beadle, J. R., Saunders, J. P., and Wajda Jr., T. J. (1989). Process for manufacturing tagatose.US5002612A.
Beerens, K., Desmet, T., and Soetaert, W. (2012). Enzymes for the biocatalytic production of rare sugars. Journal of Industrial Microbiology & Biotechnology, 39(6), 823-834.
Belitz, H.-D., Grosch, W., and Schieberle, P. (2009). Food Chemistry, Springer-Verlag, Heidelberg.
Bertelsen, H., Jensen, B. B., and Buemann, B. (1999). D-Tagatose - A novel low-calorie bulk sweetener
with prebiotic properties. In Low-Calories Sweeteners: Present and Future (Corti, A., ed.), pp. 98-109. Karger, Basel.
Dijkmans, J., Gabriëls, D., Dusselier, M., de Clippel, F., Vanelderen, P., Houthoofd, K., Malfliet, A.,Pontikes, Y., and
Sels, B. F. (2013). Productive sugar isomerization with highly active Sn in dealuminated β zeolites. Green Chemistry, 15(10), 2777-2785.
Dominique, T., Jean-Louis, B., Barbara, B., Susan, F.- T., Marina, H., Ildico, H.-E. K., Inge, M., J., M. H., Androniki, N., Grażyna, N., Kristina, P.,Yolanda, S., Alfonso, S., Anders, S., Martin, S.,Daniel, T., Hendrik, V. L., Marco, V., Peter, W., and Monika, N.-B. (2016). Scientific Opinion on the energy conversion factor of D-tagatose for labelling purposes. EFSA Journal, 14(11), e04630.
Drabo, P. and Delidovich, I. (2018). Catalytic isomerization of galactose into tagatose in the presence of bases and Lewis acids. Catalysis Communications, 107, 24-28.
El Khadem, H. S., Ennifar, S., and Isbell, H. S. (1989). Evidence of stable hydrogen-bonded ions during isomerization of hexoses in alkali. Carbohydrate Research, 185(1), 51-59.
Espinosa, I. and Fogelfeld, L. (2010). Tagatose: From a sweetener to a new diabetic medication? Expert Opinion on Investigational Drugs, 19(2), 285-294.
Gao, D.-M., Kobayashi, T., and Adachi, S. (2015a). Production of rare sugars from common sugars in subcritical aqueous ethanol. Food Chemistry, 175, 465-470.
Gao, D.-M., Kobayashi, T., and Adachi, S. (2015b). Solubility of D-galactose, D-talose, and Dtagatose in aqueous ethanol at low temperature. Food Science and Technology Research, 21(6), 801-803.
Gao, D. M., Kobayashi, T., and Adachi, S. (2015c). Kinetic analysis for the isomerization of glucose, fructose, and mannose in subcritical aqueous ethanol. Bioscience, Biotechnology and Biochemistry, 79(6), 1005-1010.
Gao, D. M., Kobayashi, T., and Adachi, S. (2015d). Kinetic effect of alcohols on hexose isomerization under subcritical aqueous conditions. Chemical Engineering Research and Design, 104, 723-729.
Gao, D. M., Kobayashi, T., and Adachi, S. (2015e). Production of rare sugars from common sugars in subcritical aqueous ethanol. Food Chemistry, 175, 465-470.
Gao, D. M., Kobayashi, T., and Adachi, S. (2015f). Promotion or suppression of glucose isomerization in subcritical aqueous straightand branched-chain alcohols. Bioscience, Biotechnology and Biochemistry, 79(3), 470-474.
Gao, D. M., Kobayashi, T., and Adachi, S. (2016). Production of keto-disaccharides from aldodisaccharides
in subcritical aqueous ethanol.Bioscience, Biotechnology and Biochemistry, 80(5), 998-1005.
Gao, D. M., Kobayashi, T., and Adachi, S. (2017). Promoted isomerization of aldoses to ketoses in subcritical aqueous acetonitrile. Canadian Journal of Chemical Engineering, 95(2), 359-363.
Granström, T. B., Takata, G., Tokuda, M., and Izumori, K. (2004). Izumoring: A novel and complete strategy for bioproduction of rare sugars.Journal of Bioscience and Bioengineering, 97(2), 89-94.
Guerrero-Wyss, M., Durán Agüero, S., and Angarita Dávila, L. (2018). D-Tagatose is a promising sweetener to control glycaemia: A new functional food. BioMed Research International 2018.
Guo, Q., An, Y., Yun, J., Yang, M., Magocha, T. A.,Zhu, J., Xue, Y., Qi, Y., Hossain, Z., Sun, W., and Qi, X. (2018). Enhanced D-tagatose production by spore surface-displayed Larabinose isomerase from isolated Lactobacillus brevis PC16 and biotransformation. Bioresource Technology, 247, 940-946.
Irina, D., and Regina, P. (2016). Catalytic isomerization of biomass-derived aldoses: A review.ChemSusChem, 9(6), 547-561.
Jayamuthunagai, J., Gautam, P., Srisowmeya, G., and Chakravarthy, M. (2017a). Biocatalytic production of D-tagatose: A potential rare sugar with versatile applications. Critical Reviews in Food Science and Nutrition, 57(16), 3430-3437.
Jayamuthunagai, J., Srisowmeya, G., Chakravarthy, M., and Gautam, P. (2017b). D-Tagatose production by permeabilized and immobilized Lactobacillus plantarum using whey permeate.Bioresource Technology, 235, 250-255.
Khuwijitjaru, P. (2016). Utilization of plant-based agricultural waste by subcritical water treatment Japan Journal of Food Engineering, 17(2), 33-39.
Khuwijitjaru, P., Nualchan, P., and Adachi, S. (2007). Foaming and emulsifying properties of rice bran extracts obtained by subcritical water treatment.Silpakorn University Science and Technology Journal, 1(1), 7-12.
Lamothe, L. M., Lê, K.-A., Samra, R. A., Roger, O.,Green, H., and Macé, K. (2017). The scientific basis for healthful carbohydrate profile. Critical Reviews in Food Science and Nutrition, 1-13.
Lee, S.-H., Hong, S.-H., Kim, K.-R., and Oh, D.-K. (2017). High-yield production of pure tagatose from fructose by a three-step enzymatic cascade reaction. Biotechnology Letters, 39(8), 1141-1148.
Levin, G. V. (2002). Tagatose, the new GRAS sweetener and health product. Journal of Medicinal Food, 5(1), 23-36.
Levin, G. V., Zehner, L. R., Saunders, J. P., and Beadle, J. R. (1995). Sugar substitutes: their energy values, bulk characteristics, and potential health benefits. The American Journal of Clinical Nutrition, 62(5), 1161S-1168S.
Lu, J., Boughner, E. C., Liotta, C. L., and Eckert, C. A. (2002). Nearcritical and supercritical ethanol as a benign solvent: polarity and hydrogenbonding.Fluid Phase Equilibria, 198(1), 37-49.
Oh, D.-K. (2007). Tagatose: Properties, applications, and biotechnological processes. Applied Microbiology and Biotechnology, 76(1), 1.
Park, C., and Lee, J.-S. (2013). Mini Review: Natural ingredients for diabetes which are approved by Korean FDA. Biomedical Research, 24(1), 164-169.
Patel, M. J., Akhani, R. C., Patel, A. T., Dedania, S.R., and Patel, D. H. (2017). A single and two step isomerization process for D-tagatose and L-ribose bioproduction using L-arabinose somerase and D-lyxose isomerase. Enzyme and Microbial Technology, 97, 27-33.
Pigman, W., and Horton, D., eds. (1972). The Carbohydrates: Chemistry and Biochemistry,Academic Press, New York and London.
Sha, F., Zheng, Y., Chen, J., Chen, K., Cao, F., Yan, M., and Ouyang, P. (2018). D-Tagatose manufacture through bio-oxidation of galactitol derived from waste xylose mother liquor. Green Chemistry, 20(10), 2382-2391.
Shin, K.-C., Sim, D.-H., Seo, M.-J., and Oh, D.-K. (2016). Increased production of food-grade D-tagatose from D-galactose by permeabilized and immobilized cells of Corynebacterium glutamicum, a GRAS host, expressing D-galactose isomerase from Geobacillus thermodenitrificans. Journal of Agricultural and Food Chemistry, 64(43), 8146-8153.
Skytte, U. P. (2006). Tagatose. In Sweeteners and Sugar Alternatives in Food Technology (Mitchell,H., ed.), pp. 262-294. Blackwell Publishing, Oxford, UK.
Soisangwan, N., Gao, D. M., Kobayashi, T.,Khuwijitjaru, P., and Adachi, S. (2016). Kinetic analysis for the isomerization of cellobiose to cellobiulose in subcritical aqueous ethanol. Carbohydrate Research, 433, 67-72.
Soisangwan, N., Gao, D. M., Kobayashi, T., Khuwijitjaru, P., and Adachi, S. (2017a). Production of lactulose from lactose in subcritical aqueous ethanol. Journal of Food Process Engineering, 40(2).
Soisangwan, N., Khuwijitjaru, P., Kobayashi, T., and Adachi, S. (2017b). Kinetic analysis of lactulose production from lactose in subcritical aqueous ethanol. Food Science and Technology Research, 23(1), 45-49.
Stanhope, K. L. (2016). Sugar consumption, metabolic disease and obesity: The state of the controversy. Critical Reviews in Clinical Laboratory Sciences, 53(1), 52-67.
Troyano, E., Martinez-Castro, I., and Olano, A. (1992). Kinetics of galactose and tagatose formation during heat-treatment of milk. Food Chemistry, 45(1), 41-43.
Usuki, C., Kimura, Y., and Adachi, S. (2007). Isomerization of hexoses in subcritical water. Food Science and Technology Research, 13(3), 205-209.
Vera, C., and Illanes, A. (2016). Lactose-derived nondigestible oligosaccharides and other high added-value products. In Lactose-Derived Prebiotics: A Process Perspective, pp. 87-110.Academic Press, San Diego.
Vuorinen, T., and Sjöström, E. (1982). Kinetics of alkali-catalyzed isomerization of D-glucose and D-fructose in ethanol-water solutions. Carbohydrate Research, 108(1), 23-29.
Wiboonsirikul, J., and Adachi, S. (2008). Extraction of functional substances from agricultural products or by-products by subcritical water treatment. Food Science and Technology Research, 14(4), 319-328.
Williams, L. A. (2015). Trending down: Fat, sugar,sodium. Food Technology, 69, 22-30.
Xu, W., Zhang, W., Zhang, T., Jiang, B., and Mu, W. (2018). L-Arabinose isomerases: Characteristics,modification, and application. Trends in Food Science & Technology, 78, 25-33.
Yang, S. J., Kim, Y. H., Kim, S. B., Park, S. W.,Park, I. H., Kim, M. H., and Lee, Y. M. (2013). Production method for
tagatose.US20160138053A1.
Yang, S. J., Lee, Y. M., Park, I. H., Lee, C.-H., Cho,H. K., Kim, S. B., Kim, Y. H., and Park, S. W. (2018). Hexuronatec4-epimerase variant having improved D-tagatose conversion activity, and d-tagatose production method using same. WO2018021893 (A1).