Biomechanical effect of length and diameter of a short implant used in splinted prosthesis at the posterior atrophic maxilla of aging patients: A finite element study
Main Article Content
Abstract
The aim of this study was to evaluate the influence of implant diameter, implant length, and cortical bone thickness on the biomechanical behavior of a splinted implant in the posterior atrophic maxilla of aging patients. Eight finite element models for the posterior maxilla bone block were simulated. Each model had two implants with zirconia splinted crowns and varying second pre-molar implant length, first molar implant diameter, and cortical bone thickness. Biomechanical behavior was observed after loading the models with maximum bite force of the elderly patients. The results show that serious biomechanical complications as a consequence of implant displacement and implant fracture were not likely to occur. Additionally, the models with a thicker cortical bone and a larger implant diameter expressed lower elastic strain within the bone. It can be inferred that cortical bone thickness and implant diameter are the dominant factors in improving the biomechanical performance of these implants. Clinicians must not neglect to consider that strain overloading which results from the bite force may lead to peri implant marginal bone loss. Increasing the implant diameter in patients with minimal cortical bone levels can maintain the peri implant marginal bone which is able to result in better long-term outcomes.
Downloads
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
Baggi, L., Cappelloni, I., Di Girolamo, M., Maceri, F., and Vairo, G. (2008). The influence of implant diameter and length on stress distribution of osseointegrated implants related to crestal bone geometry: a three-dimensional finite element analysis. Journal of Prosthetic Dentistry, 100(6), 422-431.
Brunski, J. B. (1993). Avoid pitfalls of overloading and micromotion of intraosseous implants. Dental Implantology Update, 4(10), 77-81.
Buser, D., Sennerby, L., and De Bruyn, H. (2017). Modern implant dentistry based on osseointegration: 50 years of progress, current trends and open questions. Periodontology 2000, 73(1), 7-21.
Chong, M. X., Khoo, C. D., Goh, K. H., Rahman, F., and Shoji, Y. (2016). Effect of age on bite force. Journal of Oral Science, 58(3), 361-363.
Chou, H. -Y., Müftü, S., and Bozkaya, D. (2010). Combined effects of implant insertion depth and alveolar bone quality on periimplant bone strain induced by a wide-diameter, short implant and a narrow-diameter, long implant. Journal of Prosthetic Dentistry, 104(5), 293-300.
De Prado, I., Iturrate, M., Minguez, R., and Solaberrieta, E. (2018). Evaluation of the Accuracy of a System to Align Occlusal Dynamic Data on 3D Digital Casts. BioMed Research International, 2018, 8079089.
Elias, C. N., Lima, J. H. C., Valiev, R., and Meyers, M. A. (2008). Biomedical applications of titanium and its alloys. Journal of The Minerals, Metals & Materials Society, 60(3), 46-49.
Fanuscu, M. I., Vu, H. V., and Poncelet, B. (2004). Implant biomechanics in grafted sinus: a finite element analysis. The Journal of Oral Implantology, 30(2), 59-68.
Geng, J. P., Tan, K. B. C., and Liu, G. R. (2001). Application of finite element analysis in implant dentistry: a review of the literature. Journal of Prosthetic Dentistry, 85(6), 585-598.
Grossmann, Y., Finger, I. M., and Block, M. S. (2005). Indications for splinting implant restorations. Journal of Oral and Maxillofacial Surgery, 63(11), 1642-1652.
Hasan, I., Heinemann, F., Aitlahrach, M., and Bourauel, C. (2010). Biomechanical finite element analysis of small diameter and short dental implant. Biomedizinische Technik, 55(6), 341-350.
Hoffler, C. E., Moore, K. E., Kozloff, K., Zysset, P. K., and Goldstein, S. A., (2000). Age, gender, and bone lamellae elastic moduli. Journal of Orthopaedic Research, 18(3), 432-437.
Holmes, D. C., and Loftus, J. T. (1997). Influence of bone quality on stress distribution for endosseous implants. The Journal of Oral Implantology, 23(3), 104-111.
Isidor, F. (1996). Loss of osseointegration caused by occlusal load of oral implants. A clinical and radiographic study in monkeys. Clinical Oral Implants Research, 7(2), 143-152.
Jimbo, R., and Albrektsson, T. (2015). Long-term clinical success of minimally and moderately rough oral implants: a review of 71 studies with 5 years or more of follow-up. Implant Dentistry, 24(1), 62-69.
Lemos, C. A. A., Ferro-Alves, M. L., Okamoto, R., Mendonça, M. R., and Pellizzer, E. P. (2016). Short dental implants versus standard dental implants placed in the posterior jaws: A systematic review and meta-analysis. Journal of Dentistry, 47, 8-17.
Kitagawa, T., Tanimoto, Y., Nemoto, K., and Aida, M. (2005). Influence of Cortical Bone Quality on Stress Distribution in Bone around Dental Implant. Dental Materials Journal, 24(2), 219-224.
Ko, Y. C., Huang, H. L., Shen, Y. W., Cai, J. Y., Fuh, L. J., and Hsu, J. T. (2017). Variations in crestal cortical bone thickness at dental implant sites in different regions of the jawbone. Clinical Implant Dentistry and Related Research, 19(3), 440-446.
Koos, B., Godt, A., Schille, C., and Göz, G. (2010). Precision of an instrumentation-based method of analyzing occlusion and its resulting distribution of forces in the dental arch. Journal of Orofacial Orthopedics, 71(6), 403-410.
Lekholm, U., and Zarb, G. A. (1985). Patient selection and preparation. In Tissue-integrated Prostheses: Osseointegration in Clinical Dentistry (Branemark, P. I., Zarb, G. A., and Albrektsson, T., eds.), pp. 199-209. USA: Chicago Quintessence.
Malmstrom, H., Gupta, B., Ghanem, A., Cacciato, R., Ren, Y., and Romanos, G. E. (2016). Success rate of short dental implants supporting single crowns and fixed bridges. Clinical Oral Implants Research, 27(9), 1093-1098.
Mendonça, J. A., Francischone, C. E., Senna, P. M., De zOliveira, A. E. M., and Sotto-Maior, B. S. (2014). A retrospective evaluation of the survival rates of splinted and non-splinted short dental implants in posterior partially edentulous jaws. Journal of Periodontology, 85(6), 787-794.
Misirlioglu, M., Nalcaci, R., Baran, I., Adisen, M. Z., and Yilmaz, S. (2014). A possible association of idiopathic osteosclerosis with excessive occlusal forces. Quintessence International, 45(3). 251-258.
Moreno Vazquez, J. C., Gonzalez De Rivera, A. S., Gil, H. S., and Mifsut, R. S. (2014). Complication rate in 200 consecutive sinus lift procedures: guidelines for prevention and treatment. Journal of Oral and Maxillofacial Surgery, 72(5), 892-901.
Muchhala, S., Unozawa, M., Wang W. C. W., and Robins, C. G. (2018). Treatment options for atrophic ridges based on anatomical locations of the missing teeth. Journal of Oral Biology, 5(1), 1-6.
Okumura, N., Stegaroiu, R., Kitamura, E., Kurokawa, K., and Nomura, S. (2010). Influence of maxillary cortical bone thickness, implant design and implant diameter on stress around implants: a three-dimensional finite element analysis. Journal of Prosthodontic Research, 54(3), 133-142.
Papaspyridakos, P., De Souza, A., Vazouras, K., Gholami, H., Pagni, S., and Weber, H. P. (2018). Survival rates of short dental implants (≤6 mm) compared with implants longer than 6 mm in posterior jaw areas: A meta-analysis. Clinical Oral Implants Research, 29(S16), 8-20.
Pellizzer, E. P., De Mello, C. C., Santiago Junior, J. F., De Souza Batista, V. E., De Faria Almeida, D. A., and Verri, F. R. (2015). Analysis of the biomechanical behavior of short implants: The photo-elasticity method. Materials Science and Engineering: C, 55, 187-192.
Pramstraller, M., Farina, R., Franceschetti, G., Pramstraller, C., and Trombelli, L. (2011). Ridge dimensions of the edentulous posterior maxilla: a retrospective analysis of a cohort of 127 patients using computerized tomography data. Clinical Oral Implants Research, 22(1), 54-61.
Rossi, F., Botticelli, D., Cesaretti, G., De Santis, E., Storelli, S., and Lang, N. P. (2016). Use of short implants (6 mm) in a single-tooth replacement: a 5-year follow-up prospective randomized controlled multicenter clinical study. Clinical Oral Implants Research, 27(4), 458-464.
Seker, E., Ulusoy, M., Ozan, O., Doğan, D. Ö., and Seker, B. K. (2014). Biomechanical effects of different fixed partial denture designs planned on bicortically anchored short, graft-supported long, or 45-degree-inclined long implants in the posterior maxilla: a three-dimensional finite element analysis. The International Journal of Oral & Maxillofacial Implants, 29(1), e1–e9.
Sevimay, M., Turhan, F., Kiliçarslan, M. A., and Eskitascioglu, G. (2005). Three-dimensional finite element analysis of the effect of different bone quality on stress distribution in an implant-supported crown. Journal of Prosthetic Dentistry, 93(3), 227-234.
Sugiura, T., Yamamoto, K., Kawakami, M., Horita, S., Murakami, K., and Kirita, T. (2015). Influence of bone parameters on peri-implant bone strain distribution in the posterior mandible. Medicina Oral, Patologia Oral y Cirugia Bucal, 20(1), e66-e73.
Tan, W. L., Wong, T. L. T., Wong, M. C. M., and Lang, N. P. (2012). A systematic review of post-extractional alveolar hard and soft tissue dimensional changes in humans. Clinical Oral Implants Research, 23(5), 1-21.
Tanaka, C. B., Harisha, H., Baldassarri, M., Wolff, M. S., Tong, H., Meira, J. B. C., and Zhang, Y. (2016). Experimental and finite element study of residual thermal stresses in veneered Y-TZP structures. Ceramics International, 42(7), 9214-9221.
Ueda, N., Takayama, Y., and Yokoyama, A. (2017). Minimization of dental implant diameter and length according to bone quality determined by finite element analysis and optimized calculation. Journal of Prosthodontic Research, 61(3), 324-332.
Welsch, G., Boyer, R., and Collings, E. W. (1993). Materials properties handbook: titanium alloys. Ohio, USA: ASM International, p. 178.