An overview of chemical synthesis of antiviral peptides

Main Article Content

Rani Maharani
Muhamad Imam Muhajir

Abstract

Antiviral peptides are a class of compounds with outstanding properties for the treatment of viral diseases. The sources of these peptides are varied, including plants and bacteria and they can also be chemically synthesized. As chemical synthesis is being increasingly applied, this review discusses the chemical synthesis of antiviral peptides. Initially, the antiviral peptides were grouped depending on their basic structures, including peptide and peptide conjugate groups, followed by a discussion of the synthetic approach. Two techniques commonly used to synthesize the peptides are solution-phase and solid-phase peptide synthesis, where the latter is mostly applied to make the peptides. The synthesis strategies, including the selection of the N-amino protecting group, coupling reagents, resin cleavage cocktails, resin, and other approaches, were also discussed.

Downloads

Download data is not yet available.

Article Details

How to Cite
Maharani, R., & Muhajir, M. I. (2021). An overview of chemical synthesis of antiviral peptides. Science, Engineering and Health Studies, 15, 21010003. https://doi.org/10.14456/10.14456/sehs.2021.20
Section
Editorials and Reviews

References

Andrei, G., Couto, A. S., De Lederkramer, R. M., and Coto, C. E. (1994). Purification and partial characterization of an antiviral active peptide from Melia azedarach L. Antiviral Chemistry and Chemotherapy, 5(2), 105-110.

Arar, K., Aubertin, A. M., Roche, A. C., Monsigny, M., and Mayer, R. (1995). Synthesis and antiviral activity of peptide-oligonucleotide conjugates prepared by using nα-(bromoacetyl)peptides. Bioconjugate Chemistry, 6(5), 573-577.

Carpino, L. A. (1993). 1-Hydroxy-7-azabenzotriazole. an efficient peptide coupling additive. Journal of the American Chemical Society, 115(10), 4397-4398.

Carpino, L. A., El-Faham, A., and Albericio, F. (1994). Racemization studies during solid-phase peptide synthesis using azabenzotriazole-based coupling reagents. Tetrahedron Letters, 35(15), 2279-2282.

Dettner, F., Hänchen, A., Schols, D., Toti, L., Nußer, A., and Süssmuth, R. D. (2009). Total synthesis of the antiviral peptide antibiotic feglymycin. Angewandte Chemie International Edition, 48(10), 1856-1861.

Donalisio, M., Rusnati, M., Civra, A., Bugatti, A., Allemand, D., Pirri, G., Giuliani, A., Landolfo, S., and Lembo, D. (2010). Identification of a dendrimeric heparan sulfate-binding peptide that inhibits infectivity of genital types of human papillomaviruses. Antimicrobial Agents and Chemotherapy, 54(10), 4290-4299.

Flint, S. J., Huang, W., Goodhouse, J., and Kyin, S. (2005). A peptide inhibitor of exportin1 blocks shuttling of the adenoviral E1B 55 kDa protein but not export of viral late mRNAs. Virology, 337(1), 7-17.

Fontenot, J. D., Zacharopoulos, V. R., and Phillips, D. M. (1996). Proline-rich tandem repeats of antibody complementarity-determining regions bind and neutralize human immunodeficiency virus type 1 particles. Journal of Virology, 70(10), 6557-6562.

Fosgerau, K., and Hoffmann, T. (2015). Peptide therapeutics: Current status and future directions. Drug Discovery Today, 20(1), 122-128.

García-Ramos, Y., Giraud, M., Tulla-Puche, J., and Albericio, F. (2009). Optimized Fmoc solid-phase synthesis of Thymosin α1 by side-chain anchoring onto a PEG resin. Peptide Science, 92(6), 565-572.

Gómara, M. J., Sánchez-Merino, V., Paús, A., Merino-Mansilla, A., Gatell, J. M., Yuste, E., and Haro, I. (2016). Definition of an 18-mer synthetic peptide derived from the gb virus c e1 protein as a new hiv-1 entry inhibitor. Biochimica et Biophysica Acta-General Subjects, 1860(6), 1139-1148.

Han, S. Y., and Kim, Y. A. (2004). Recent development of peptide coupling reagents in organic synthesis. Tetrahedron, 60(11), 2447-2467.

Hood, C. A., Fuentes, G., Patel, H., Page, K., Menakuru, M., and Park, J. H. (2008). Fast conventional Fmoc solid-phase peptide synthesis with HCTU. Journal of Peptide Science, 14(1), 97-101.

Ji, M., Zhu, T., Xing, M., Luan, N., Mwangi, J., Yan, X., Mo, G., Rong, M., Li, B., Lai, R., and Jin, L. (2019). An antiviral peptide from Alopecosa nagpag spider targets NS2B-NS3 protease of flaviviruses. Toxins, 11(10), 584-594.

Kliger, Y., Gallo, S. A., Peisajovich, S. G., Muñoz-Barroso, I., Avkin, S., Blumenthal, R., and Shai, Y. (2001). Mode of action of an antiviral peptide from HIV-1. Journal of Biological Chemistry, 276(2), 1391-1397.

Li, J., Hui Liu, C., and Shan Wang, F. (2010). Thymosin alpha 1: biological activities, applications and genetic engineering production. Peptides, 31(11), 2151-2158.

Lima, A. B., Behnam, M. A. M., Sherif, Y. E., Nitsche, C., Vechi, S. M., and Klein, C. D. (2015). Dual inhibitors of the dengue and West Nile virus NS2B-NS3 proteases: synthesis, biological evaluation and docking studies of novel peptide-hybrids. Bioorganic & Medicinal Chemistry, 23(17), 5748-5755.

Lin, L. T., Hsu, W. C., and Lin, C. C. (2014). Antiviral natural products and herbal medicines. Journal of Traditional and Complementary Medicine, 4(1), 24-35.

Liu, X., Huang, Y., Cheng, M., Pan, L., Si, Y., and Li, G., Niu, Y., Zhao, L., Zhao, J., Li, X., Chen, Y., and Yang, W. (2012). Screening and rational design of Hepatitis C Virus entry inhibitory peptides derived from GB Virus A NS5A. American Society for Microbiology, 87(3), 1649-1657.

Merrifield, R. B. (1963). Solid phase peptide synthesis. I. the synthesis of a tetrapeptide. Journal of the American Chemical Society, 85(14), 2149-2154.

Mi, Z., Wang, X., He, Y., Li, X., Ding, J., Liu, H., Zhou, J., and Cen, S. (2014). A novel peptide to disrupt the interaction of BST-2 and Vpu. Biopolymers, 102(3), 280-287.

Neises, B., and Steglich, W. (1978). Simple method for the esterification of carboxylic acids. Angewandte Chemie International Edition in English, 17(7), 522-524.

Panya, A., Yongpitakwattana, P., Budchart, P., Sawasdee, N., Krobthong, S., Paemanee, A., Roytrakul, S., Rattanabunyong, S., Choowongkomon, K., and Yenchitsomanus, P. (2019). Novel bioactive peptides demonstrating anti-dengue virus activity isolated from the Asian medicinal plant Acacia Catechu. Chemical Biology & Drug Design, 93(2), 100-109.

Park, J. Y., Yang, S. Y., Kim, Y. C., Kim, J. C., Le Dang, Q., Kim, J. J., and Kim, I. S. (2012). Antiviral peptide from Pseudomonas chlororaphis O6 against tobacco mosaic virus (TMV). Journal of the Korean Society for Applied Biological Chemistry, 55(1), 89-94.

Patel, K., Trivedi, S., Luo, S., Zhu, X., Pal, D., Kern, E. R., and Mitra, A. K. (2005). Synthesis, physicochemical properties and antiviral activities of ester prodrugs of ganciclovir. International Journal of Pharmaceutics, 305(1-2), 75-89.

Scala, M. C., Antonia, S., Pepe, G., Bertamino, A., Carotenuto, A., Grieco, P., Novellino, E., Gomez-Monterrey, I. M., Campiglia, P., and Sala, M. (2018). Investigation on side-product formation during the synthesis of a lactoferrin-derived lactam-bridged cyclic peptide. Amino Acids, 50, 1367-1375.

Scrima, M., Di Marino, S., Grimaldi, M., Campana, F., Vitiello, G., Piotto, S. P., D'Errico, G., and D'Ursi, A. M. (2014). Structural features of the C8 antiviral peptide in a membrane-mimicking environment. Biochimica et Biophysica Acta-Biomembranes, 1838(3), 1010-1018.

Sherrington, D. C. (1990). Solid phase peptide synthesis — a practical approach. Reactive Polymers, 12(3), 310-311.

Subiros-Funosas, R., Moreno, J. A., Bayó-Puxan, N., Abu-Rabeah, K., Ewenson, A., Atias, D., Marks, R. S., and Albericio, F. (2008). PyClocK, the phosphonium salt derived from 6-Cl-HOBt. Chimica Oggi, 26(4), 10-12.

Tan, Y. W., Ang, M. J. Y., Lau, Q. Y., Poulsen, A., Ng, F. M., Then, S. W., Peng, J., Hill, J., Hong, W. J., Chia, C. S. B., and Chu, J. J. H. (2016). Antiviral activities of peptide-based covalent inhibitors of the Enterovirus 71 3C protease. Scientific Reports, 6, 33663.

Taylor, M. P., Kobiler, O., and Enquist, L. W. (2012). Alphaherpesvirus axon-to-cell spread involves limited virion transmission. Proceedings of the National Academy of Sciences of the United States of America, 109(42), 17046-17051.

Tripathi, G. R., Park, J., Park, Y., Hwang, I., Park, Y., Hahm, K. S., and Cheong, H. (2006). Potide-G derived from potato (Solanum tuberosum L.) is active against potato virus Y0 (PVY0) infection. Journal of Agricultural and Food Chemistry, 54(22), 8437-8443.

Ussery, M. A., Irvin, J. D., and Hardesty, B. (1977). Inhibition of poliovirus replication by a plant antiviral peptide. Annals of the New York Academy of Sciences, 284(1), 431-440.

Ye, Y. H., Li, H., and Jiang, X. (2005). DEPBT as an efficient coupling reagent for amide bond formation with remarkable resistance to racemization. Peptide Science, 80(2-3), 172-178.

Zeng, M., Cui, W., Zhao, Y., Liu, Z., Dong, S., and Guo, Y. (2008). Antiviral active peptide from oyster. Chinese Journal of Oceanology and Limnology, 26(3), 307-312.