Nisin as a potential anticancer agent

Main Article Content

Muhammad Fairuz Azmi
Alyaa Al Khateeb
Gabriele Anisah Froemming
Sharaniza Ab Rahim
Effat Omar

Abstract

Cancer treatment has advanced over the last four decades from surgery, chemotherapy, and radiation therapies to a more targeted therapy with less undesirable side effects. Studies on nisin as an anticancer agent in recent years aimed at exploring its potential as an adjuvant therapy due to its claimed selectivity. The aim of this review is to describe the potential use of nisin as an anticancer agent. Nisin has been used against seven different types of cancers. The combination of nisin with a chemotherapeutic agent proofed to be superior to the chemotherapeutic drug used alone. Nisin caused a much lower cytotoxic effect on non-cancerous cells, while inducing apoptosis of cancer cells. This is due to pore on the plasma membrane, allowing influx of calcium, and subsequent series of changes leading to apoptosis. Nisin is a potential therapeutic agent to be used as an adjunct to the current cancer chemotherapy.

Downloads

Download data is not yet available.

Article Details

How to Cite
Fairuz Azmi, M., Al Khateeb, A., Anisah Froemming, G., Ab Rahim, S., & Omar, E. (2021). Nisin as a potential anticancer agent. Science, Engineering and Health Studies, 15, 21010007. https://doi.org/10.14456/sehs.2021.30
Section
Editorials and Reviews

References

Abdalla, A. M. E., Xiao, L., Ullah, M. W., Yu, M., Ouyang, C., and Yang, G. (2018). Current challenges of cancer anti-angiogenic therapy and the promise of nanotherapeutics. Theranostics, 8(2), 533-548.

Ahmadi, S., Ghollasi, M., and Hosseini, H. M. (2017). The apoptotic impact of nisin as a potent bacteriocin on the colon cancer cells. Microbial Pathogenesis, 111, 193-197.

Avand, A., Akbari, V., and Shafizadegan, S. (2018). In vitro cytotoxic activity of a lactococcus lactis antimicrobial peptide against breast cancer cells. Iranian Journal of Biotechnology, 16(3), 213-220.

Baskar, R., Lee, K. A., Yeo, R., and Yeoh, K. W. (2012). Cancer and radiation therapy: current advances and future directions. International Journal of Medical Sciences, 9(3), 193-199.

Begde, D., Bundale, S., Mashitha, P., Rudra, J., Nashikkar, N., and Upadhyay, A. (2011). Immunomodulatory efficacy of nisin-a bacterial lantibiotic peptide. Journal of Peptide Science, 17(6), 438-444.

Bezu, L., Kepp, O., Cerrato, G., Pol, J., Fucikova, J., Spisek, R., Zitvogel, L., Kroemer, G., and Galluzzi, L. (2018). Trial watch: peptide-based vaccines in anticancer therapy. OncoImmunology, 7(12), e1511506.

Blackadar, C. B. (2016). Historical review of the causes of cancer. World Journal of Clinical Oncology, 7(1), 54-86.

Bompard, J., Rosso, A., Brizuela, L., Mebarek, S., Blum, L. J., Trunfio-Sfarghiu, A. M., Lollo, G., Granjon, T., Girard-Egrot, A., and Maniti, O. (2020). Membrane fluidity as a new means to selectively target cancer cells with fusogenic lipid carriers. Langmuir, 36(19), 5134-5144.

Boohaker, R. J., Lee, M. W., Vishnubhotla, P., Perez, J. M., and Khaled, A. R. (2012). The use of therapeutic peptides to target and to kill cancer cells. Current Medicinal Chemistry. 19(22), 3794-3804.

Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R. L., Torre, L. A., and Jemal, A. (2018). Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians, 68(6), 394-424.

Brenner, M. K., Gottschalk, S., Leen, A. M., and Vera, J. F. (2013). Is cancer gene therapy an empty suit? Lancet Oncology, 14(11), 447-456.

Brotz, H., and Sahl, H. G. (2000). New insights into the mechanism of action of lantibiotics — diverse diverse biological effects by binding to the same molecular target. Journal of Antimicrobial Chemotherapy, 46(1), 1-6.

Burris, H. A. (2004). Dual kinase inhibition in the treatment of breast cancer: initial experience with the EGFR/ErbB-2 inhibitor lapatinib. The Oncologist, 9(3), 10-15.

Chan, S. C., Hui, L., and Chen, H. M. (1998). Enhancement of the cytolytic effect of anti-bacterial cecropin by the microvilli of cancer cells. Anticancer Research, 18(6A), 4467-4474.

Christ, K., Wiedemann, I., Bakowsky, U., Sahl, H. G., and Bendas, G. (2007). The role of lipid II in membrane binding of and pore formation by nisin analyzed by two combined biosensor techniques. Biochimica et Biophysica Acta – Biomembranes, 1768(3), 694-704.

Climent, M., and Martin, S. T. (2018). Complications of laparoscopic rectal cancer surgery. Mini-invasive Surgery, 2(45), 1-13.

Conlon, K. C., Miljkovic, M. D., and Waldmann, T. A. (2019). Cytokines in the treatment of cancer. Journal of Interferon and Cytokine Research, 39(1), 6-21.

Cornut, G., Fortin, C., and Soulières, D. (2008). Antineoplastic properties of bacteriocins: revisiting potential active agents. American Journal of Clinical Oncology: Cancer Clinical Trials, 31(4), 399-404.

Cortes, J. E., Kantarjian, H. M., Brümmendorf, T. H., Kim, D. W., Turkina, A. G., Shen, Z. X., Pasquini, R., Khoury, H. J., Arkin, S., Volkert, A., Besson, N., Abbas, R., Wang, J., Leip, E., and Gambacorti-Passerini, C. (2011). Safety and efficacy of bosutinib (SKI-606) in chronic phase philadelphia chromosome-positive chronic myeloid leukemia patients with resistance or intolerance to imatinib. Blood, 118(17), 4567-4576.

Danaei, G., Hoorn, S. V., Lopez, A. D., Murray, C. J. L., and Ezzati, M. (2005). Causes of cancer in the world: comparative risk assessment of nine behavioural and environmental risk factors. The Lancet, 366(9499), 1784-1793.

Dudley, M. E., and Rosenberg, S. A. (2003). Adoptive-cell-transfer therapy for the treatment of patients with cancer. Nature Reviews Cancer, 3(9), 666-675.

Edagawa, M., Kawauchi, J., Hirata, M., Goshima, H., Inoue, M., Okamoto, T., Murakami, A., Maehara, Y., and Kitajima, S. (2014). Role of activating transcription factor 3 (ATF3) in endoplasmic reticulum (ER) stress-induced sensitization of p53-deficient human colon cancer cells to tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL)-mediated apoptosis through up-regulation of death receptor 5 (DR5) by zerumbone and celecoxib. Journal of Biological Chemistry, 289(31), 21544-21561.

Falzone, L., Salomone, S., and Libra, M. (2018). Evolution of cancer pharmacological treatments at the turn of the third millennium. Frontiers in Pharmacology, 9, 1300.

Fountzilas, C., Patel, S., and Mahalingam, D. (2017). Review: oncolytic virotherapy, updates and future directions. Oncotarget, 8(60), 102617-102639.

Garg, S., Dhavala, S., Krumova, K., Kiebish, M., Vishnudas, V., Gesta, S., Saragarajan, R., and Narain, N. (2015). Membrane fluidity in cancer cell membranes as a therapeutic target: validation using BPM 31510. Biophysical Journal, 108(2), 246A.

Ghiringhelli, F., and Apetoh, L. (2015). Enhancing the anticancer effects of 5-fluorouracil: current challenges and future perspectives. Biomedical Journal, 38(2), 111-116.

Ghoncheh, M., and Salehiniya, H. (2016). Inequality in the incidence and mortality of all cancers in the world. Iranian Journal of Public Health, 45(12), 1675-1677.

Glassman, P. M., and Balthasar, J. P. (2014). Mechanistic considerations for the use of monoclonal antibodies for cancer therapy. Cancer Biology and Medicine, 11(1), 20-33.

Guo, C., Manjili, M. H., Subjeck, J. R., Sarkar, D., Fisher, P. B., and Wang, X. Y. (2013). Chapter seven - therapeutic cancer vaccines: past, present, and future. Advances in Cancer Research, 119, 421-475.

Horowitz, M., Neeman, E., Sharon, E., and Ben-Eliyahu, S. (2015). Exploiting the critical perioperative period to improve long-term cancer outcomes. Nature Reviews Clinical Oncology, 12(4), 213-226.

Hoskin, D. W., and Ramamoorthy, A. (2008). Studies on anticancer activities of antimicrobial peptides. Biochimica et Biophysica Acta – Biomembranes, 1778(2), 357-375.

Hotte, S. J., and Koneru, R. (2009). Role of cytokine therapy for Renal Cell Carcinoma in the era of targeted agents. Current Oncology, 16(S1), 40-44.

Housman, G., Byler, S., Heerboth, S., Lapinska, K., Longacre, M., Snyder, N., and Sarkar, S. (2014). Drug resistance in cancer: an overview. Cancers, 6(3), 1769-1792.

Jackson, S. P., and Bartek, J. (2009). The DNA-damage response in human biology and disease. Nature, 461(7267), 1071-1078.

Jairam, V., Lee, V., and Park, H. S. (2019). Treatment-related complications of systemic therapy and radiotherapy. JAMA Oncology, 5(7), 1028-1035.

Joo, N. E., Ritchie, K., Kamarajan, P., Miao, D., and Kapila, Y. L. (2012). Nisin, an apoptogenic bacteriocin and food preservative, attenuates HNSCC tumorigenesis via CHAC1. Cancer Medicine, 1(3), 295-305.

Kamarajan, P., Hayami, T., Matte, B., Liu, Y., Danciu, T., Ramamoorthy, A., Worden, F., Kapila, S., and Kapila, Y. (2015). Nisin ZP, a bacteriocin and food preservative, inhibits head and neck cancer tumorigenesis and prolongs survival. Plos One, 10(7), e0131008.

Kaur, S., and Kaur, S. (2015). Bacteriocins as potential anticancer agents. Frontiers in Pharmacology, 6, 272.

Keating, G. M. (2014). Afatinib: a review of its use in the treatment of advanced non-small cell lung cancer. Drugs, 74(2), 207-221.

Kirchhoff, P., Clavien, P. A., and Hahnloser, D. (2010). Complications in colorectal surgery: risk factors and preventive strategies. Patient Safety in Surgery, 4(5), 5.

Kono, K., Mimura, K., and Kiessling, R. (2013). Immunogenic tumor cell death induced by chemoradiotherapy: molecular mechanisms and a clinical translation. Cell Death & Disease, 4(6), e688.

Kumar, A., Tikoo, S., Maity, S., Sengupta, S., Sengupta, S., Kaur, A., and Bachhawat, A. K. (2012). Mammalian proapoptotic factor chaC1 and its homologues function as γ-glutamyl cyclotransferases acting specifically on glutathione. EMBO Reports, 13, 1095-1101.

Lewies, A., Wentzel, J. F., Miller, H. C., and Du Plessis, L. H. (2018). The antimicrobial peptide nisin z induces selective toxicity and apoptotic cell death in cultured melanoma cells. Biochimie, 144, 28-40.

Liu, B., Ezeogu, L., Zellmer, L., Yu, B., Xu, N., and Joshua Liao, D. (2015). Protecting the normal in order to better kill the cancer. Cancer Medicine, 4(9), 1394-1403.

Liu, G., Su, L., Hao, X., Zhong, N., Zhong, D., Singhal, S., and Liu, X. (2012). Salermide up-regulates death receptor 5 expression through the ATF4-ATF3-CHOP axis and leads to apoptosis in human cancer cells. Journal of Cellular and Molecular Medicine, 16(7), 1618-1628.

Liu, Z., Shi, Q., Song, X., Wang, Y., Wang, Y., Song, E., and Song, Y. (2016). Activating transcription factor 4 (ATF4)-ATF3-C/EBP homologous protein (CHOP) cascade shows an essential role in the ER stress-induced sensitization of tetrachlorobenzoquinone-challenged pc12 cells to ROS-mediated apoptosis via death receptor 5 (DR5) signaling. Chemical Research in Toxicology, 29(9), 1510-1518.

Lu, L., Shan, F., Li, W., and Lu, H. (2016). Short-term side effects after radioiodine treatment in patients with differentiated thyroidcancer. BioMed Research International, 2016, 4376720.

Lundin, J. I., and Checkoway, H. (2009). Endotoxin and cancer. Environmental Health Perspectives, 117(9), 1344-1350.

Lupo, G., Caporarello, N., Olivieri, M., Cristaldi, M., Motta, C., Bramanti, V., Avola, R., Salmeri, M., Nicoletti, F., and Anfuso, C. D. (2017). Anti-angiogenic therapy in cancer: downsides and new pivots for precision medicine. Frontiers in Pharmacology, 7, 519.

Maher, S., and McClean, S. (2006). Investigation of the cytotoxicity of eukaryotic and prokaryotic antimicrobial peptides in intestinal epithelial cells in vitro. Biochemical Pharmacology, 71(9), 1289-1298.

Maj, E., Papiernik, D., and Wietrzyk, J. (2016). Antiangiogenic cancer treatment: the great discovery and greater complexity (review). International Journal of Oncology, 49(5), 1773-1784.

Marconi, R., Serafini, A., Giovanetti, A., Bartoleschi, C., Pardini, M. C., Bossi, G., and Strigari, L. (2019). Cytokine modulation in breast cancer patients undergoing radiotherapy: a revision of the most recent studies. International Journal of Molecular Sciences, 20(2), 382.

Martín, R., Escobedo, S., Martín, C., Crespo, A., Quiros, L. M., and Suarez, J. E. (2015). Surface glycosaminoglycans protect eukaryotic cells against membrane-driven peptide bacteriocins. Antimicrobial Agents and Chemotherapy, 59(1), 677-681.

McAuliffe, O., Ross, R. P., and Hill, C. (2001). Lantibiotics: structure, biosynthesis and mode of action. FEMS Microbiology Reviews, 25(3), 285-308.

McGuire, S. (2016). World cancer report 2014. Geneva, Switzerland: World Health Organization, International Agency for Research on Cancer, WHO press, 2015. Advances in Nutrition, 7(2), 418-419.

Meng, X., Zhong, J., Liu, S., Murray, M., and Gonzalez-Angulo, A. M. (2012). A new hypothesis for the cancer mechanism. Cancer and Metastasis Reviews, 31, 247-268.

Mohan, G., Ayisha Hamna, T. P., Jijo, A. J., Saradha Devi, K. M., Narayanasamy, A., and Vellingiri, B. (2019). Recent advances in radiotherapy and its associated side effects in cancer—a review. The Journal of Basic and Applied Zoology, 80, 14.

Mungrue, I. N., Pagnon, J., Kohannim, O., Gargalovic, P. S., and Lusis, A. J. (2009). CHAC1/MGC4504 is a novel proapoptotic component of the unfolded protein response, downstream of the ATF4-ATF3-CHOP cascade. The Journal of Immunology, 182(1), 466-476.

Newhauser, W. D., De Gonzalez, A. B., Schulte, R., and Lee, C. (2016). A review of radiotherapy-induced late effects research after advanced technology treatments. Frontiers in Oncology, 6(13), 1-11.

Okamoto, Y., Taguchi, K., Sakuragi, M., Imoto, S., Yamasaki, K., and Otagiri, M. (2019). Preparation, characterization, and in vitro/in vivo evaluation of paclitaxel-bound albumin-encapsulated liposomes for the treatment of pancreatic cancer. ACS Omega, 4(5), 8693-8700.

Paiva, A. D., Breukink, E., and Mantovani, H. C. (2011). Role of lipid II and membrane thickness in the mechanism of action of the lantibiotic bovicin HC5. Antimicrobial Agents and Chemotherapy, 55(11), 5284-5293.

Paiva, A. D., De Oliveira, M. D., De Paula, S. O., Baracat-Pereira, M. C., Breukink, E., and Mantovani, H. C. (2012). Toxicity of bovicin HC5 against mammalian cell lines and the role of cholesterol in bacteriocin activity. Microbiology, 158(11), 2851-2858.

Pathak, A., Tanwar, S., Kumar, V., and Banarjee, B. D. (2018). Present and future prospect of small molecule & related targeted therapy against human cancer. Vivechan International Journal of Research, 9(1), 36-49.

Perica, K., Varela, J. C., Oelke, M., and Schneck, J. (2015). Adoptive t cell Immunotherapy for cancer. Rambam Maimonides Medical Journal, 6(1), e0004.

Phan, N. K. (2014). Biological therapy: a new age of cancer treatment. Biomedical Research and Therapy, 1(2), 32-34.

Pilepich, M. V., Perez, C. A., Walz, B. J., and Zivnuska, F. R. (1981). Complications of definitive radiotherapy for carcinoma of the prostate. International Journal of Radiation Oncology Biology Physics, 7(10), 1341-1348.

Pinton, P., Giorgi, C., Siviero, R., and Zecchini, E., and Rizzuto, R. (2008). Calcium and apoptosis: ER-mitochondria Ca2+ transfer in the control of apoptosis. Oncogene, 27(50), 6407-6418.

Preet, S., Bharati, S., Panjeta, A., Tewari, R., and Rishi, P. (2015). Effect of nisin and doxorubicin on DMBA-induced skin carcinogenesis—a possible adjunct therapy. Tumor Biology, 36(11), 8301-8308.

Prince, A., Sandhu, P., Ror, P., Dash, E., Sharma, S., Arakha, M., Jha, S., Akhter, Y., and Saleem, M. (2016). Lipid-II independent antimicrobial mechanism of disin Depends on its crowding and degree of oligomerization. Scientific Reports, 6, 37908.

Prince, A., Tiwari, A., Ror, P., Sandhu, P., Roy, J., Jha, S., Mallick, B., Akhter, Y., and Saleem, M. (2019). Attenuation of neuroblastoma cell growth by nisin is mediated by modulation of phase behavior and enhanced cell membrane fluidity. Physical Chemistry Chemical Physics, 21(4), 1980-1987.

Qian, X., Wang, X., and Jin, H. (2014). Cell transfer therapy for cancer: past, present, and future. Journal of Immunology Research, 2014, 525913.

Rajabi, M., and Mousa, S. A. (2017). The role of angiogenesis in cancer treatment. Biomedicines, 5(2), 34.

Rana, K., Sharma, R., and Preet, S. (2019). Augmented therapeutic efficacy of 5-fluorouracil in conjunction with lantibiotic nisin against skin cancer. Biochemical and Biophysical Research Communications, 520(3), 551-559.

Riedl, S., Rinner, B., Asslaber, M., Schaider, H., Walzer, S., Novak, A., Lohner, K., and Zweytick, D. (2011a). In search of a novel target — phosphatidylserine exposed by non-apoptotic tumor cells and metastases of malignancies with poor treatment efficacy. Biochimica et Biophysica Acta – Biomembranes, 1808(11), 2638-2645.

Riedl, S., Zweytick, D., and Lohner, K. (2011b). Membrane-active host defense peptides – Challenges and perspectives for the development of novel anticancer drugs. Chemistry and Physics of Lipids, 164(8), 766-781.

Rodriguez, J., Castañón, E., Perez-Gracia, J. L., Rodriguez, I., Viudez, A., Alfaro, C., Oñate, C., Perez, G., Rotellar, F., Inogés, S., López-Diaz de Cerio, A., Resano, L., Ponz-Sarvise, M., Rodriguez-Ruiz, M. E., Chopitea, A., Vera, R., and Melero, I. (2018). A randomized phase II clinical trial of dendritic cell vaccination following complete resection of colon cancer liver metastasis. Journal for ImmunoTherapy of Cancer, 6(1), 96.

Russell, S. J., Peng, K. W., and Bell, J. C. (2012). Oncolytic virotherapy. Nature Biotechnology, 30(7), 658-670.

Schirrmacher, V. (2019). From chemotherapy to biological therapy: a review of novel concepts to reduce the side effects of systemic cancer treatment. International Journal of Oncology, 54(2), 407-419.

Schweizer, F. (2009). Cationic amphiphilic peptides with cancer-selective toxicity. European Journal of Pharmacology, 625(1-3), 190-194.

Shaikh, F., Abhinand, P., and Ragunath, P. (2012). Identification & characterization of lactobacillus salavarius bacteriocins and its relevance in cancer therapeutics. Biomedical Informatics, 8(13), 589-594.

Shin, J. M., Gwak, J. W., Kamarajan, P., Fenno, J. C., Rickard, A. H., and Kapila, Y. L. (2016). Biomedical applications of nisin. Journal of Applied Microbiology, 120(6), 1449-1465.

Song, S., Vuai, M. S., and Zhong, M. (2018). The role of bacteria in cancer therapy - enemies in the past, but allies at present. Infectious agents and cancer, 13, 9.

Stein, C. J., and Colditz, G. A. (2004). Modifiable risk factors for cancer. British Journal of Cancer, 90(2), 299-303.

Suter, T. M., and Ewer, M. S. (2013). Cancer drugs and the heart: importance and management. European Heart Journal, 34(15), 1102-1111.

Szlasa, W., Zendran, I., Zalesińska, A., Tarek, M., and Kulbacka, J. (2020). Lipid composition of the cancer cell membrane. Journal of Bioenergetics and Biomembranes, 52(5), 321-342.

Tohme, S., Simmons, R. L., and Tsung, A. (2017). Surgery for cancer: a trigger for metastases. Cancer Research, 77(7), 1548-1552.

Tomaszewski, J. J., and Smaldone, M. C. (2010). Emerging intravesical therapies for management of nonmuscle invasive bladder cancer. Open Access Journal of Urology, 2(1), 67-84.

Tsimberidou A. M. (2015). Targeted therapy in cancer. Cancer Chemotherapy and Pharmacology, 76(6), 1113-1132.

Urruticoechea, A., Alemany, R., Balart, J., Villanueva, A., Vinals, F., and Capella, G. (2010). Recent advances in cancer therapy: an overview. Current Pharmaceutical Design, 16(1), 3-10.

Valente, S. A., Liu, Y., Upadhyaya, S., Tu, C., and Pratt, D. A. (2019). The effect of wound complications following mastectomy with immediate reconstruction on breast cancer recurrence. The American Journal of Surgery, 217(3), 514-518.

Van Schaeybroeck, S., Karaiskou-McCaul, A., Kelly, D., Longley, D., Galligan, L., Van Cutsem, E., and Johnston, P. (2005). Epidermal growth factor receptor activity determines response of colorectal cancer cells to gefitinib alone and in combination with chemotherapy. Clinical Cancer Research, 11(20), 7480-7489.

Vasquez, M., Tenesaca, S., and Berraondo, P. (2017). New trends in antitumor vaccines in melanoma. Annals of Translational Medicine, 5(19), 384.

Verma, S., Petrella, T., Hamm, C., Bak, K., and Charette, M. (2008). Biochemotherapy for the treatment of metastatic malignant melanoma: a clinical practice guideline. Current Oncology, 15(2), 85-89.

Wang, S., and ElDeiry, W. S. (2007). P53, cell cycle arrest and apop-tosis. In 25 Years of p53 Research (Hainaut P., Wiman K. G., eds.), pp. 141-163. [Online URL: https://link.springer.com/chapter/10.1007%2F978-1-4020-2922-6_6] accessed on June 12, 2020.

Wiedemann, I., Breukink, E., Van Kraaij, C., Kuipers, O. P., Bierbaum, G., De Kruijff, B., and Sahl, H. G. (2001). Specific binding of nisin to the peptidoglycan precursor lipid II combines pore formation and inhibition of cell wall biosynthesis for potent antibiotic activity. Journal of Biological Chemistry. 276(3), 1772-1779.

Williams, G. C., and Delves-Broughton, J. (2003). Encyclopedia of Food Sciences and Nutrition, 2nd, Dorset: Elsevier Science Ltd., pp. 4128-4135.

Wirth, T., and Ylä-Herttuala, S. (2014). Gene therapy used in cancer treatment. Biomedicines, 2(2), 149-162.

Yang, S. C., Lin, C. H., Sung, C. T., and Fang, J. Y. (2014). Antibacterial activities of bacteriocins: Application in foods and pharmaceuticals. Frontiers in Microbiology, 5, 241.

Yates, K. R., Welsh, J., Udegbunam, N. O., Greenman, J., Maraveyas, A., and Madden, L. A. (2012). Duramycin exhibits antiproliferative properties and induces apoptosis in tumour cells. Blood Coagulation and Fibrinolysis, 23(5), 396-401.

Zacharof, M. P., and Lovitt, R. W. (2012). Bacteriocins produced by lactic acid bacteria a review article. APCBEE Procedia, 2, 50-56.

Zainodini, N., Hassanshahi, G., Hajizadeh, M., Falahati-Pour, S. K., Mahmoodi, M., and Mirzaei, M. R. (2018). Nisin induces cytotoxicity and apoptosis in human asterocytoma cell line (SW1088). Asian Pacific Journal of Cancer Prevention, 19(8), 2217-2221.

Zalba, S., and ten Hagen, T. L. M. (2017). Cell membrane modulation as adjuvant in cancer therapy. Cancer Treatment Reviews, 52, 48-57.