4-Bromo-N,N-dimethylaniline, 4-fluoro-N,N-dimethylaniline, 4-methyl-N,N-dimethylaniline: Density-functional theory study

Main Article Content

Hayat EL Ouafy
Mouna Aamor
Mustapha Oubenali
Mohamed Mbarki
Ahmed Gamouh
Aziz EL Haimouti
Tarik EL Ouafy

Abstract

Classical physics perfectly describes our daily environment but becomes inoperative at the microscopic scale of atoms and particles. Quantum mechanics is then used, in which the quantities of matter or energy exchanged can no longer take any value and only discretes values. The present work studied the molecules of 4-bromo-N,N-dimethylaniline, 4-fluoro-N,N-dimethylaniline, 4-methyl-N,N-dimethylaniline by a very precise method, and the Density-functional theory (DFT) gave an important theoretical framework for deriving properties of quantum chemistry. The number of local reactivity descriptors based on DFT containing electron density was given to facilitate the understanding of the reactivity of atoms and to determine the ionization potential, electronic affinity, chemical hardness, electronegativity and overall softness, maximum charge transfer, overall electrophilicity, as determined by using nonlinear optical descriptors. To prove the stability of the molecules, the 3D maps of the highest occupied moleculars orbit, the lowest unoccupied molecular orbit, and the Mulliken charges of each molecule was determined. The electrostatic potential served as a guide for the early stages of a reaction, in which the interacting species were not yet very close to each other, the bond lengths and angles of our molecules.

Downloads

Download data is not yet available.

Article Details

How to Cite
EL Ouafy, H., Aamor, M., Oubenali, M., Mbarki, M., Gamouh, A., EL Haimouti, A., & EL Ouafy, T. (2021). 4-Bromo-N,N-dimethylaniline, 4-fluoro-N,N-dimethylaniline, 4-methyl-N,N-dimethylaniline: Density-functional theory study. Science, Engineering and Health Studies, 15, 21020012. https://doi.org/10.14456/sehs.2021.39
Section
Physical sciences

References

EL Ouafy, H., EL Ouafy, T., Oubenali, M., EL Haimouti, A., Gamouh, A., and Mbarki, M. (2021). Analysis of the chemical reactivity of limonene by the functional density theory method using global descriptors. Journal of Chemical Health Risks, 11(2), 213-221.

Dantlgraber, G., Baumeister, U., Diele, S., Kresse, H., Lühmann, B., Lang, H., and Tschierske, C. (2002). Preuve d'une nouvelle phase cristalline liquide à commutation ferroélectrique formée par un dendrimère à base de carbosilane avec des unités mésogènes en forme de banane. Journal de l'American Chemical Society, 124 (50), 14852-14853.

Duque, A. F., Bessa, V. S., Carvalho, M. F., and Castro, P. M. L., (2011). Bioaugmentation of a rotating biological contactor for degradation of 2-fluorophenol. Bioresource Technology. 102(19), 9300-9303.

Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Patersson, G. A., Nakatsuji, H., Li, X., Caricato, M., Marenich, A., Bloino, J., Kenesko, B. G., Gomperts, R., Mennucci, B., Hratchian, H. P., Ortiz, J. V., . . . Fox, D. J. (2016). Gaussian 09, Revision A.02. Inc., Wallingford CT. Expanding the limits of computational chemistry, [Online URL: https://gaussian.com/g09citation/] accessed on November 10, 2020.

Genson, K. L., Holzmueller, J., Leshchiner, I., Agina, E., Boiko, N., Shibaev, V. P., and Tsukruk, V. V. (2005). Organized monolayers of carbosilane dendrimers with mesogenic terminalgroups. Macromolecules, 38(19), 8028-8035.

Hathwar, V. R., Pal, R., and Guru Row, T. N. (2010). Charge density analysis of crystals of nicotinamide with salicylic acid and oxalic acid: an insight into the salt to cocrystal continuum. Crystal Growth and Design, 10(8), 3306-3310.

Kovács, A., Macsári, I., and Hargittai, I. (1999). Intramolecular hydrogen bonding in fluorophenol derivatives: 2-fluorophenol, 2, 6-difluorophenol, and 2, 3, 5, 6-tetrafluorohydroquinone. The Journal of Physical Chemistry A, 103(16), 3110-3114.

Lahmidi, S., Elyoussfi, A., Dafali, A., Elmsellem, H., Sebbar, N. K., El Ouasif, L., and Hammouti, B. (2017). Corrosion inhibition of mild steel by two new 1, 2, 4-triazolo [1, 5-a] pyrimidine derivatives in 1 M HCl: Experimental and computational study. Journal of Materials and Environmental Science, 8, 225-237.

Liu, L., and Gao, H. (2012). Molecular structure and vibrational spectra of ibuprofen using density function theory calculations. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 89, 201-209.

Gasteiger, J., Li, X., Rudolph, C., Sadowski, J., and Zupan, J. (1994). Representation of molecular electrostatic potentials by topological feature maps. Journal of the American Chemical Society. 116(11), 4608-4620.

Pardo, R., Zayat, M., and Levy, D. (2011). Photochromic organic–inorganic hybrid materials. Chemical Society Reviews, 40(2), 672-687.

Ponomarenko, S. A., Boiko, N. I., Shibaev, V. P., and Magonov, S. N. (2000). Atomic force microscopy study of structural organization of carbosilane liquid crystalline dendrimer. Langmuir, 16(12), 5487-5493.

Sebastian, S., Sylvestre, S., Jayabharathi, J., Ayyapan, S., Amalanathan, M., Oudayakumar, K., and Herman, I. A. (2015). Study on conformational stability, molecular structure, vibrational spectra, NBO, TD-DFT, HOMO and LUMO analysis of 3, 5-dinitrosalicylic acid by DFT techniques. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 136, 1107-1118.

Tzeng, W. B, Narayanan, K., Shieh, K. C., and Tung, C. C. (1998). A study of the structures and vibrations of C6H5NH2, C6H5NHD, C6H5ND2, in the state S1 by calculations Ab Initio. Journal of Molecular Structure: THEOCHEM, 428(1-3), 231-240.

Wojtaś, M., Ga, A., Czupiński, O., Pietraszko, A., and Jakubas, R. (2009). Perchlorate de 2, 4, 6-triméthylpyridinium : propriétés polaires et corrélations avec la structure moléculaire du cristal hybride organique-inorganique. Journal of Solid State Chemistry, 182 (11), 3021-3030.