Genetic relationship of Coccinia grandis (L.) Voigt accessions, based on RAPD and ISSR markers

Main Article Content

Chokchai Kittiwongwattana

Abstract

Coccinia grandis (L.) Voigt or ivy gourd is widely distributed in nature and has potential for medicinal uses. However, there is little information on the genetic diversity of wild populations in Thailand. Here, 15 ivy gourd accessions were collected from Bangkok and nearby provinces. Angled and lobed leaves were observed. DNA fingerprints were generated from twelve random amplified polymorphic DNA (RAPD) and twelve inter-simple sequence repeat (ISSR) primers. The level of polymorphism in the RAPD profiles was higher than that of the ISSR profiles. Dice’s similarity coefficient from RAPD data ranged from 0.73 to 0.82 and was lower than that from the ISSR data (0.88-1.00). The unweighted pair group method with arithmetic mean dendrogram, based on combined RAPD and ISSR data, was similar to the RAPD dendrogram but distinct from the ISSR dendrogram. Two major clusters were found with eleven and four accessions. The genetic relationship between some accessions was relatively consistent with either their locations or leaf shapes. The result indicated that the RAPD and ISSR techniques were suitable for the genetic study of ivy gourd. It also provided the basis for future studies with a higher number of samples for a better understanding of ivy gourd genetic diversity in Thailand.

Downloads

Download data is not yet available.

Article Details

How to Cite
Kittiwongwattana, C. (2022). Genetic relationship of Coccinia grandis (L.) Voigt accessions, based on RAPD and ISSR markers. Science, Engineering and Health Studies, 16, 22030005. https://doi.org/10.14456/sehs.2022.21
Section
Biological sciences

References

Ahmed, M. R., Anis, M., Alatar, A. A., and Faisal, M. (2017). In vitro clonal propagation and evaluation of genetic fidelity using RAPD and ISSR marker in micropropagated plants of Cassia alata L.: a potential medicinal plant. Agroforestry Systems, 91(4), 637-647.

Akçali Giachino, R. R. (2020). Investigation of the genetic variation of anise (Pimpinella anisum L.) using RAPD and ISSR markers. Genetic Resources and Crop Evolution, 67(3), 763-780.

Albrahim, T., Alnasser, M. M., Al-Anazi, M. R., ALKahtani, M. D., Alkahtani, S., and Al-Qahtani, A. A. (2020). Potential anti-inflammatory and anti-apoptotic effect of Coccinia grandis plant extract in LPS stimulated-THP-1 cells. Environmental Science and Pollution Research, 27(17), 21892-21904.

Ali, S., Khan, N., and Xie, L. (2020). Molecular and hormonal regulation of leaf morphogenesis in Arabidopsis. International Journal of Molecular Sciences, 21(14), 5132.

Amiryousefi, A., Hyvönen, J., and Poczai, P. (2018). iMEC: Online marker efficiency calculator. Applications in Plant Sciences, 6(6), e01159.

Astiti, M. A., Jittmittraphap, A., Leaungwutiwong, P., Chutiwitoonchai, N., Pripdeevech, P., Mahidol, C., Ruchirawat, S., and Kittakoop, P. (2021). LC-QTOF-MS/MS based molecular networking approach for the isolation of α-glucosidase inhibitors and virucidal agents from Coccinia grandis (L.) Voigt. Foods, 10(12), 3041.

Baruah, J., Pandey, S. K., Begum, T., Sarma, N., Paw, M., and Lal, M. (2019). Molecular diversity assessed amongst high dry rhizome recovery ginger germplasm (Zingiber officinale Roscoe) from NE-India using RAPD and ISSR markers. Industrial Crops and Products, 129, 463-471.

Bhowmick, B. K., Nanda, S., Nayak, S., Jha, S., and Joshi, R. K. (2014). An APETALA3 MADS-box linked SCAR marker associated with male specific sex expression in Coccinia grandis (L). Voigt. Scientia Horticulturae, 176, 85-90.

Botstein, D., White R. L., Skolnick M., and Davis R. W. (1980). Construction of a genetic linkage map in man using restriction fragment length polymorphisms. American Journal of Human Genetics 32(3), 314-331.

Bunkrongcheap, R., Hutadilok-Towatana, N., Noipha, K., Wattanapiromsakul, C., Inafuku, M., and Oku, H. (2014). Ivy gourd (Coccinia grandis L. Voigt) root suppresses adipocyte differentiation in 3T3-L1 cells. Lipids in Health and Disease, 13(1), 88.

Dice, L. R. (1945). Measures of the amount of ecologic association between species. Ecology, 26(3), 297-302.

Godwin, I. D., Aitken, E. A. B., and Smith, L. W. (1997). Application of inter simple sequence repeat (ISSR) markers to plant genetics. Electrophoresis, 18(9), 1524-1528.

Hossain, M. U., Islam, M., Afroz, M., Sultana, S. S., and Alam, S. S. (2016). Karyotype and RAPD analysis of male and female Coccinia grandis L. from Bangladesh. Cytologia, 81(3), 349-355.

Hussain, S., Alex, R., Alyethodi, R. R., Sharma, S., Verma, N., Sirohi, A. S., Singh, U., Kumar, S., Chand, N., Sengar, G. S., Sharma, A., Tyagi, R., Arya, S., and Tyagi, S. (2021). Development of a RAPD marker-based classification criterion for quality semen production in Holstein crossbred bulls. Reproduction in Domestic Animals, 56(5), 736-743.

Kaur, J., Lee, S., Park, Y., and Sharma, A. (2017). RAPD analysis of Leuconostoc mesenteroides strains associated with vegetables and food products from Korea. Lebensmittel-Wissenschaft & Technologie. 77, 383-388.

Kazemeini, F., Asri, Y., Mostafavi, G., Kalvandi, R., and Mehregan, I. (2020). RAPD-based evaluation of genetic diversity among populations of the Iranian endemic species Rhabdosciadium aucheri Boiss. (Apiaceae). Molecular Biology Reports, 47(12), 9345-9352.

Kim, H., Lei, P., Wang, A., Liu, S., Zhao, Y., Huang, F., Yu, Z., Zhu, G., He, Z., Tan, D., Wang, H., and Meng, F. (2021). Genetic diversity of castor bean (Ricinus communis L.) revealed by ISSR and RAPD markers. Agronomy, 11(3), 457.

Liu, B. H. (1998). Statistical Genomics: Linkage, Mapping and QTL Analysis. Florida: CRC Press LLC, pp. 157-160.

Meenatchi, P., Purushothaman, A., and Maneemegalai, S. (2017). Antioxidant, antiglycation and insulinotrophic properties of Coccinia grandis (L.) in vitro: Possible role in prevention of diabetic complications. Journal of Traditional and Complementary Medicine, 7(1), 54-64.

Naik, A., Prajapat, P., Krishnamurthy, R., and Pathak, J. M. (2017). Assessment of genetic diversity in Costus pictus accessions based on RAPD and ISSR markers. 3 Biotech, 7(1), 70.

Nasution, F., Theanhom, A. A., Sukartini, Bhuyar, P., and Chumpookamm, J. (2021). Genetic diversity evaluation in wild Muntingia calabura L. based on random amplified polymorphic DNA (RAPD) markers. Gene Reports, 25(4), 101335.

Pan, Q. N., Geng, C. C., Li, D. D., Xu, S. W., Mao, D. D., Umbreen, S., Loake, G. J., and Cue, B. M. (2019). Nitrate reductase-mediated nitric oxide regulates the leaf shape in Arabidopsis by mediating the homeostasis of reactive oxygen species. International Journal of Molecular Sciences, 20(9), 2235.

Payel, D., Mala, P., and Sunita, S. (2015). Inter-genus variation analysis in few members of Cucurbitaceae based on ISSR markers. Biotechnology and Biotechnological Equipment, 29(5), 882-886.

Pekamwar, S. S., Kalyankar, T. M., and Kokate, S. S. (2013). Pharmacological activities of Coccinia grandis: Review. Journal of Applied Pharmaceutical Science, 3(5), 114-119.

Perrier, X., and Jacquemoud-Collet, J. P. (2006). DARwin software. Dissimilarity Analysis and Representation for windows. [Online URL: http://darwin.cirad.fr/darwin] accessed on August 20, 2021.

Phong, D. T., Hien, V. T. T., Thanh, T. T. V., and Tang, D. V. (2011). Comparison of RAPD and ISSR markers for assessment of genetic diversity among endangered rare Dalbergia oliveri (Fabaceae) genotypes in Vietnam. Genetics and Molecular Research, 10(4), 2382-2393.

Prevost, A., and Wilkinson M. J. (1999). A new system of comparing PCR primers applied to ISSR fingerprinting of potato cultivars. Theoretic and Applied Genetics, 98(1), 107-112.

Rameshkumar, R., Pandian, S., Rathinapriya, P., Selvi, C. T., Satish, L., Gowrishankar, S., Leung, D., and Ramesh, M. (2019). Genetic diversity and phylogenetic relationship of Nilgirianthus ciliatus populations using ISSR and RAPD markers: Implications for conservation of an endemic and vulnerable medicinal plant. Biocatalysis and Agricultural Biotechnology, 18, 101072.

Reddy, M. P., Sarla, N., and Siddiq, E. A. (2002). Inter simple sequence repeat (ISSR) polymorphism and its application in plant breeding. Euphytica, 128(1), 9-17.

Saldaña, C. L., Cancan, J. D., Cruz, W., Correa, M. Y., Ramos, M., Cuellar, E., and Arbizu, C. I. (2021). Genetic diversity and population structure of capirona (Calycophyllum spruceanum Benth.) from the Peruvian Amazon revealed by RAPD markers. Forests, 12(8), 1125.

Shaina, T. J., and Beevy, S. (2012). Morphological variation and evolutionary significance of Coccinia grandis (L.) Voigt: An under-exploited cucurbitaceous vegetable crop. Plant Systematics and Evolution, 298(3), 653-659.

Souframanien, J., and Gopalakrishna, T. (2004). A comparative analysis of genetic diversity in blackgram genotypes using RAPD and ISSR markers. Theoretical and Applied Genetics, 109(8), 1687-1693.

Srinivasan, P., Raja, H. D., and Tamilvanan, R. (2021). Efficient in vitro plant regeneration from leaf-derived callus and genetic fidelity assessment of an endemic medicinal plant Ranunculus wallichianus Wight and Arnn by using RAPD and ISSR markers. Plant Cell, Tissue and Organ Culture, 147, 413-420.

Supari, N., Kaya, Y., Biroudian, M., and Javed, M. A. (2019). Molecular characterization of Malaysian rice cultivars using SSR markers. In N. A. Mahat, R. Ab. Wahab, F. Z. Huyop, A. S. Ab. Keyon, N. B. Attan, S. Chandren, and I. B. W. Gunam (Eds.), Proceedings of the 2nd International Conference on Biosciences and Medical Engineering. 2155(1), 020016. New York: AIP Publishing.

Tessier, C., David J., This P., Boursiquot J. M., and Charrier A. (1999). Optimization of the choice of molecular markers for varietal identification in Vitis vinifera L. Theoretical and Applied Genetics, 98, 171-177.

Verma, K. S., Ul Haq, S., Kachhwaha, S., and Kothari, S. L. (2017). RAPD and ISSR marker assessment of genetic diversity in Citrullus colocynthis (L.) Schrad: A unique source of germplasm highly adapted to drought and high-temperature stress. 3 Biotech, 7(5), 288.

Wasantwisut, E., and Viriyapanich, T. (2003). Ivy gourd (Coccinia grandis Voigt, Coccinia cordifolia, Coccinia indica) in human nutrition and traditional applications. World Review of Nutrition and Dietetics, 91, 60-66.

Wimalasiri, D., Piva, T., Urban, S., and Huynh, T. (2016). Morphological and genetic diversity of Momordica cochinchinenesis (Cucurbitaceae) in Vietnam and Thailand. Genetic Resources and Crop Evolution, 63(1), 19-33.

Younis, A., Ramzan, F., Ramzan, Y., Zulfiqar, F., Ahsan, M., and Lim, K. B. (2020). Molecular markers improve abiotic stress tolerance in crops: A review. Plants, 9(10), 1374.