Functionality-based similarities for uncovering relationships between drugs and diseases

Main Article Content

Thitipong Kawichai
Apichat Suratanee
Kitiporn Plaimas


Drug repositioning is a process of discovering new indication for existing drugs. The similarities based on drug- and disease-associated proteins can be used to reveal the relationships between drugs and diseases, between two drugs, or between two diseases for drug repositioning. Due to a lack of complete data about drug- and disease-associated proteins, this strategy could be directly affected by the limited number of proteins under consideration. To overcome this limitation, more extensive information about drugs and diseases such as gene ontology terms, functional annotations of genes and gene products, could be used. Herein, we provided a comprehensive exploration of using functionality-based similarities to uncover the relationships among drugs and diseases. After comparing seven different similarity indices, it is found that the derived Jaccard index was the most suitable one for computing functionality-based similarity scores. The predictions of drug-disease, drug-drug, and disease-disease associations for drug repositioning were significantly improved with an accuracy of 89%, 67%, and 83%, respectively, by utilizing functionality-based similarities. The case studies showed that our approach can identify the drug-disease associations that have been under investigation such as those between tolcapone and attention deficit-hyperactivity disorder and between nicorandil and type 2 diabetes mellitus.


Download data is not yet available.

Article Details

How to Cite
Kawichai, T., Suratanee, A., & Plaimas, K. (2021). Functionality-based similarities for uncovering relationships between drugs and diseases. Science, Engineering and Health Studies, 15, 21040005.


Antonini, A., Abbruzzese, G., Barone, P., Bonuccelli, U., Lopiano, L., Onofrj, M., Zappia, M., and Quattrone, A. (2008). COMT inhibition with tolcapone in the treatment algorithm of patients with Parkinson's disease (PD): Relevance for motor and non-motor features. Neuropsychiatric Disease and Treatment, 4(1), 1-9.

Bonfanti, D. H., Alcazar, L. P., Arakaki, P. A., Martins, L. T., Agustini, B. C., de Moraes Rego, F. G., and Frigeri, H. R. (2015). ATP-dependent potassium channels and type 2 diabetes mellitus. Clinical Biochemistry, 48(7-8), 476-482.

Bonifácio, M. J., Palma, P. N., Almeida, L., and Soares-da-Silva, P. (2007). Catechol-O-methyltransferase and its inhibitors in Parkinson's disease. CNS Drug Reviews, 13(3), 352-379.

Consonni, V., and Todeschini, R. (2012). New similarity coefficients for binary data. MATCH Communications in Mathematical and in Computer Chemistry, 68(2012), 581-592.

Cruz, D. N., Simon, D. B., Nelson-Williams, C., Farhi, A., Finberg, K., Burleson, L., Gill, J. R., and Lifton, R. P. (2001). Mutations in the Na-Cl cotransporter reduce blood pressure in humans. Hypertension, 37(6), 1458-1464.

Davis, A. P., Grondin, C. J., Johnson, R. J., Sciaky, D., McMorran, R., Wiegers, J., Wiegers, T. C., and Mattingly, C. J. (2019). The comparative toxicogenomics database: Update 2019. Nucleic Acids Research, 47, D948-D954.

Davis, A. P., Murphy, C. G., Saraceni-Richards, C. A., Rosenstein, M. C., Wiegers, T. C., and Mattingly, C. J. (2008). Comparative toxicogenomics database: A knowledgebase and discovery tool for chemical–gene–disease networks. Nucleic Acids Research, 37, D786-D792.

Davis, A. P., Wiegers, T. C., King, B. L., Wiegers, J., Grondin, C. J., Sciaky, D., Johnson, R. J., and Mattingly, C. J. (2016). Generating gene ontology-disease inferences to explore mechanisms of human disease at the comparative toxicogenomics database. PLoS ONE, 11(5), e0155530.

Gottlieb, A., Stein, G. Y., Ruppin, E., and Sharan, R. (2011). PREDICT: a method for inferring novel drug indications with application to personalized medicine. Molecular Systems Biology, 7(1), 496.

Graziani, G., Fedeli, C., Moroni, L., Cosmai, L., Badalamenti, S., and Ponticelli, C. (2010). Gitelman syndrome: pathophysiological and clinical aspects. QJM: An International Journal of Medicine, 103(10), 741-748.

Hill, D. P., Smith, B., McAndrews-Hill, M. S., and Blake, J. A. (2008). Gene ontology annotations: what they mean and where they come from. BMC Bioinformatics, 9(Suppl 5), S2.

Huang, H., Nguyen, T., Ibrahim, S., Shantharam, S., Yue, Z., and Chen, J. Y. (2015). DMAP: a connectivity map database to enable identification of novel drug repositioning candidates. BMC Bioinformatics, 16(Suppl 13), S4.

Huntley, R. P., Sawford, T., Mutowo-Meullenet, P., Shypitsyna, A., Bonilla, C., Martin, M. J., and O'Donovan, C. (2015). The GOA database: Gene ontology annotation updates for 2015. Nucleic Acids Research, 43, D1057-D1063.

Jacobson, D. A., and Shyng, S. L. (2020). Ion channels of the islets in type 2 diabetes. Journal of Molecular Biology, 432(5), 1326-1346.

Kuntsi, J., Pinto, R., Price, T. S., van der Meere, J. J., Frazier-Wood, A. C., and Asherson, P. (2014). The separation of ADHD inattention and hyperactivity-impulsivity symptoms: Pathways from genetic effects to cognitive impairments and symptoms. Journal of Abnormal Child Psychology, 42(1), 127-136.

Lewis, S. N., Nsoesie, E., Weeks, C., Qiao, D., and Zhang, L. (2011). Prediction of disease and phenotype associations from genome-wide association studies. PLoS ONE, 6(11), e27175.

Nelson, B. S., Kremer, D. M., and Lyssiotis, C. A. (2018). New tricks for an old drug. Nature Chemical Biology, 14(11), 990-991.

Piñero, J., Bravo, À., Queralt-Rosinach, N., Gutiérrez-Sacristán, A., Deu-Pons, J., Centeno, E., García-García, J., Sanz, F., and Furlong, L. I. (2016). DisGeNET: a comprehensive platform integrating information on human disease-associated genes and variants. Nucleic Acids Research, 45, D833-D839.

Rutherford, K. D., Mazandu, G. K., and Mulder, N. J. (2018). A systems-level analysis of drug-target-disease associations for drug repositioning. Briefings in Functional Genomics, 17(1), 34-41.

Saito, T., and Rehmsmeier, M. (2015). The precision-recall plot is more informative than the ROC plot when evaluating binary classifiers on imbalanced datasets. PLoS ONE, 10(3), e0118432.

Sun, H., Yuan, F., Shen, X., Xiong, G., and Wu, J. (2014). Role of COMT in ADHD: a systematic meta-analysis. Molecular Neurobiology, 49(1), 251-261.

Suwalsky, M., Mennickent, S., Norris, B., and Cardenas, H. (2006). The antiepileptic drug carbamazepine affects sodium transport in toad epithelium. Toxicology in Vitro, 20(6), 891-898.

Wijaya, S. H., Afendi, F. M., Batubara, I., Darusman, L. K., Altaf-Ul-Amin, M., and Kanaya, S. (2016). Finding an appropriate equation to measure similarity between binary vectors: Case studies on Indonesian and Japanese herbal medicines. BMC Bioinformatics, 17(1), 520.

Wishart, D. S., Feunang, Y. D., Guo, A. C., Lo, E. J., Marcu, A., Grant, J. R., Sajed, T., Johnson, D., Li, C., Sayeeda, Z., Assempour, N., Iynkkaran, I., Liu, Y., Maciejewski, A., Gale, N., Wilson, A., Chin, L., Cummings, R., Le, D., Pon, A., Knox, C., and Wilson, M. (2018). DrugBank 5.0: A major update to the DrugBank database for 2018. Nucleic Acids Research, 46, D1074-D1082.

Yella, K. J., Yaddanapudi, S., Wang, Y., and Jegga, G. A. (2018). Changing trends in computational drug repositioning. Pharmaceuticals, 11(2), 57.

Youden, W. J. (1950). Index for rating diagnostic tests. Cancer, 3(1), 32-35.