Development and evaluation of a fast dissolving effervescent microneedles patch for transdermal application

Main Article Content

Phuvamin Suriyaamporn
Praneet Opanasopit
Tanasait Ngawhirunpat
Worranan Rangsimawong

Abstract

The limitation of dissolving microneedles is the lengthy period of time to completely dissolve into the skin, so fast dissolving effervescent microneedles (Ef-MNs) have been developed. The objective of this study was to develop and evaluate the Ef-MNs as a device for transdermal application. The Ef-MNs were fabricated by a nonaqueous micromolding technique using poly (methyl vinyl ether/maleic acid) copolymers (GA), sodium bicarbonate, and various organic acids (citric acid, ascorbic acid, tartaric acid). The physical properties of the Ef-MNs were determined. The penetration depth was tested on neonatal porcine skin. The moisture determination of the Ef-MNs was investigated. For the results, all the formulations showed conical microneedles with 675.26 μm-height and 391.21 μm-width. In the mechanical strength, the Ef-MNs fabricated from ascorbic acid had a significantly higher resistance force than the others. As a result, all the Ef-MNs could be completely inserted into the skin. The dissolution study showed that the Ef-MNs fabricated from ascorbic acid were completely dissolved within 15 minutes and provided an appropriate moisture uptake and content. In conclusion, the optimal Ef-MNs were fabricated from 30% w/w of GA, 5% w/w of sodium bicarbonate, 5% w/w of ascorbic acid, and 60% w/w of ethanol, thus indicating an appropriate device for transdermal application.

Downloads

Download data is not yet available.

Article Details

How to Cite
Suriyaamporn, P., Opanasopit, P., Ngawhirunpat, T., & Rangsimawong, W. (2022). Development and evaluation of a fast dissolving effervescent microneedles patch for transdermal application. Science, Engineering and Health Studies, 16, 22050010. https://doi.org/10.14456/sehs.2022.26
Section
Health sciences

References

Albadr, A. A., Tekko, I. A., Vora, L. K., Ali, A. A., Laverty, G., Donnelly, R. F., and Thakur, R. R. S. (2022). Rapidly dissolving microneedle patch of amphotericin B for intracorneal fungal infections. Drug Delivery and Translational Research, 12(4), 931-943.

Alkilani, A. Z., McCrudden, M. T. C., and Donnelly, R. F. (2015). Transdermal drug delivery: Innovative pharmaceutical developments based on disruption of the barrier properties of the stratum corneum. Pharmaceutics, 7(4), 438-470.

Al-Zahrani, S., Zaric, M., McCrudden, C., Scott, C., Kissenpfennig, A., and Donnelly, R. F. (2012). Microneedle-mediated vaccine delivery: harnessing cutaneous immunobiology to improve efficacy. Expert Opinion on Drug Delivery, 9(5), 541-550.

Aung, N. N., Ngawhirunpat, T., Rojanarata, T., Patrojanasophon, P., Pamornpathomkul, B., and Opanasopit, P. (2020). Fabrication, characterization and comparison of alpha-arbutin loaded dissolving and hydrogel forming microneedles. International Journal of Pharmaceutics, 586, 119508.

Bhatnagar, S., Gadeela, P. R., Thathireddy, P., and Venuganti, V. V. K. (2019). Microneedle-based drug delivery: materials of construction. Journal of Chemical Sciences, 131, 90.

Burnett, C. L., Bergfeld, W. F., Belsito, D. V., Hill, R. A., Klaassen, C. D., Liebler, D. C., and Andersen, F. A. (2011). Final report of the Amended Safety Assessment of PVM/MA copolymer and its related salts and esters as used in cosmetics. International Journal of Toxicology, 30(Suppl), 128s-144s.

Eltayib, E., Brady, A. J., Caffarel-Salvador, E., Gonzalez-Vazquez, P., Zaid Alkilani, A., McCarthy, H. O., and Donnelly, R. F. (2016). Hydrogel-forming microneedle arrays: Potential for use in minimally-invasive lithium monitoring. European Journal of Pharmaceutics and Biopharmaceutics, 102, 123-131.

Caló, E., Barros, J., Ballamy, L., and Khutoryanskiy, V. V. (2016). Poly(vinyl alcohol)–Gantrez® AN cryogels for wound care applications. RSC Advances, 6(107), 105487.

Gao, Y., Du, L., Li, Q., Zhu, L., Yang, M., and Ma, S. (2022). How physical techniques improve the transdermal permeation of therapeutics: A review. Medicine, 101(26), e29314.

Ke, C. J., Lin, Y. J., Hu, Y. C., Chiang, W. L., Chen, K. J., Yang, W. C., and Sung, H. W. (2012). Multidrug release based on microneedle arrays filled with pH-responsive PLGA hollow microspheres. Biomaterials, 33(20), 5156-5165.

Larrañeta, E., Moore, J., Vicente-Pérez, E. M., González-Vázquez, P., Lutton, R., Woolfson, A. D., and Donnelly, R. F. (2014). A proposed model membrane and test method for microneedle insertion studies. International Journal of Pharmaceutics, 472(1-2), 65-73.

Leone, M., Romeijn, S., Slütter, B., O’Mahony, C., Kersten, G., and Bouwstra, J. A. (2020). Hyaluronan molecular weight: Effects on dissolution time of dissolving microneedles in the skin and on immunogenicity of antigen. European Journal of Pharmaceutical Sciences, 146, 105269.

Li, W., Tang, J., Terry, R. N., Li, S., Brunie, A., Callahan, R. L., and Prausnitz, M. R. (2019). Long-acting reversible contraception by effervescent microneedle patch. Science Advances, 5(11), eaaw8145.

Mahajan, N. M., Zode, G. H., Mahapatra, D. K., Thakre, S., Dumore, N., and Gangane, P. S. (2018). Formulation development and evaluation of transdermal patch of piroxicam for treating dysmenorrhoea. Journal of Applied Pharmaceutical Science, 8(11), 35-41.

Mahato, R. (2017). Microneedles in drug delivery. In Emerging Nanotechnologies for Diagnostics, Drug Delivery and Medical Devices (Mitra, A. K., Cholkar, K., and Mandal, A., eds.), 1st, pp. 331-349. Amsterdam: Elsevier.

McAlister, E., Kearney, M. C., Martin, E. L., and Donnelly, R. F. (2021). From the laboratory to the end-user: a primary packaging study for microneedle patches containing amoxicillin sodium. Drug Delivery and Translational Research, 11(5), 2169-2185.

Menon, G. K. (2002). New insights into skin structure: scratching the surface. Advanced Drug Delivery Reviews, 54 (Suppl), S3-S17.

Newman, A. W., Reutzel-Edens, S. M., and Zografi, G. (2008). Characterization of the “hygroscopic” properties of active pharmaceutical ingredients. Journal of Pharmaceutical Sciences, 97(3), 1047-1059.

Ning, X., Chen, S., Yang, Y., Hwang, J., Wiraja, C., Zhang, C., and Xu, C. (2021). Photodynamic bubble-generating microneedles for enhanced transdermal cancer therapy. ACS Applied Polymer Materials, 3(12), 6502-6512.

Ono, A., Ito, S., Sakagami, S., Asada, H., Saito, M., Quan, Y. S., and Okada, N. (2017). Development of novel faster-dissolving microneedle patches for transcutaneous vaccine delivery. Pharmaceutics, 9(3), 27.

Pamornpathomkul, B., Ngawhirunpat, T., Tekko, I. A., Vora, L., McCarthy, H. O., and Donnelly, R. F. (2018). Dissolving polymeric microneedle arrays for enhanced site-specific acyclovir delivery. European Journal of Pharmaceutical Sciences, 121, 200-209.

Parikh, D. M. (2021). Handbook of Pharmaceutical Granulation Technology (4th ed.). Florida: CRC Press.

Prausnitz, M. R. (2004). Microneedles for transdermal drug delivery. Advanced Drug Delivery Reviews, 56(5), 581-587.

Rowe, R. C., Sheskey, P. J., and Quinn, M. E. (2009). Handbook of Pharmaceutical Excipients (6th ed.), Vol. 1. London: Pharmaceutical Press.

Schoellhammer, C. M., Blankschtein, D., and Langer, R. (2014). Skin permeabilization for transdermal drug delivery: recent advances and future prospects. Expert Opinion on Drug Delivery, 11(3), 393-407.

Shi, Y., Lu, A., Wang, X., Belhadj, Z., Wang, J., and Zhang, Q. (2021). A review of existing strategies for designing long-acting parenteral formulations: Focus on underlying mechanisms, and future perspectives. Acta Pharmaceutica Sinica B, 11(8), 2396-2415.

Simon, G. A., and Maibach, H. I. (2000). The pig as an experimental animal model of percutaneous permeation in man: qualitative and quantitative observations-an overview. Skin Pharmacology and Physiology, 13(5), 229-234.

Suriyaamporn, P., Opanasopit, P., Ngawhirunpat, T., and Rangsimawong, W. (2021). Computer-aided rational design for optimally Gantrez® S-97 and hyaluronic acid-based dissolving microneedles as a potential ocular delivery system. Journal of Drug Delivery Science and Technology, 61, 102319.

Suriyaamporn, P., Rangsimawong, W., Opanasopit, P., and Ngawhirunpat, T. (2020). Development and characterization of Gantrez® S-97 and hyaluronic acid microneedles for transdermal fluorescein sodium delivery. Key Engineering Materials, 859, 125-131.

Than, A., Liu, C., Chang, H., Duong, P. K., Cheung, C. M. G., Xu, C., and Chen, P. (2018). Self-implantable double-layered micro-drug-reservoirs for efficient and controlled ocular drug delivery. Nature Communications, 9(1), 4433.

Violalita, F., and Rini, B. (2015). The effect acid addition on characteristic effervescent tablet of tamarillo. International Journal on Advanced Science, Engineering and Information Technology, 5(3), 230-233.

Waghule, T., Singhvi, G., Dubey, S. K., Pandey, M. M., Gupta, G., Singh, M., and Dua, K. (2019). Microneedles: A smart approach and increasing potential for transdermal drug delivery system. Biomedicine & Pharmacotherapy, 109(3), 1249-1258.

Yao, G., Quan, G., Lin, S., Peng, T., Wang, Q., Ran, H., and Wu, C. (2017). Novel dissolving microneedles for enhanced transdermal delivery of levonorgestrel: In vitro and in vivo characterization. International Journal of Pharmaceutics, 534(1-2), 378-386.