Synergistic activity of friedelan-3β-ol isolated from Euphorbia lactea and doxorubicin against MDA-MB-231 breast cancer cell line
Main Article Content
Abstract
The cytotoxic activity of three triterpenoid compounds namely, friedelin [1], friedelan-3β-ol [2] and taraxerol [3] isolated from hexane fraction Euphorbia lactea Haw. was investigated in breast cancer cell lines MDA-MB-231 and MCF-7. Dose-dependent cytotoxic activity of these compounds was detected in MDA-MB-231 cells. Of the three compounds, [2] elicited the strongest inhibitory effect. The interplay between [2] and doxorubicin (Dox) in a series of combination treatments was analyzed in MDA-MB-231. Computer modeling software CompuSyn revealed that [2] and Dox exhibited a synergistic relationship over a broad range of concentration. The ratio of [2]:Dox at 25:1 µg/mL was predicted to achieve a 90% inhibitory effect with the lowest dose of each agent, thus allowing a dose reduction of [2] and Dox by ~30 and ~3 fold, respectively. Finally, the percentage of apoptotic cells in MDA-MB-231 treated with [2]:Dox at a 25:1 µg/mL combination was markedly higher than cells treated with 1x and 2x the concentration of each individual agent, supporting the predicted synergism. Together, the results highlighted [2] as an anticancer phytochemical exhibiting synergistic activity with Dox and warranted further research to assess the possibility to exploit this synergy for breast cancer treatment.
Downloads
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
Bijnsdorp, I. V., Giovannetti, E., and Peters, G. J. (2011). Analysis of drug interactions. In Cancer Cell Culture (Cree, I. A., ed.), 2nd, pp. 421-434. Totowa, New Jersey: Humana Press.
Chou, T. C. (2010). Drug combination studies and their synergy quantification using the Chou-Talalay method. Cancer Research, 70(2), 440-446.
Dai, X., Cheng, H., Bai, Z., and Li, J. (2017). Breast cancer cell line classification and its relevance with breast tumor subtyping. Journal of Cancer, 8(16), 3131-3141.
Ernst, M., Grace, O. M., Saslis-Lagoudakis, C. H., Nilsson, N., Simonsen, H. T., and Rønsted, N. (2015). Global medicinal uses of Euphorbia L. (Euphorbiaceae). Journal of Ethnopharmacology, 176, 90-101.
Fisusi, F. A., and Akala, E. O. (2019). Drug combinations in breast cancer therapy. Pharmaceutical Nanotechnology, 7(1), 3-23.
Govindachari, T. R., Viswanathan, N., Pai, B. R., Rao, U. R., and Srinivasan, M. (1967). Triterpenes of Calophyllum inophyllum Linn. Tetrahedron, 23(4), 1901-1910.
Gradishar, W. J., Anderson, B. O., Abraham, J., Aft, R., Agnese, D., Allison, K. H., Blair, S. L., Burstein, H. J., Dang, C., Elias, A. D., Giordano, S. H., Goetz, M. P., Goldstein, L. J., Isakoff, S. J., Krishnamurthy, J., Lyons, J., Marcom, P. K., Matro, J., Mayer, I. A., Moran, M. S., Mortimer, J., O'Regan, R. M., Patel, S. A., Pierce, L. J., Rugo, H. S., Sitapati, A., Smith, K. L., Smith, M. L., Soliman, H., Stringer-Reasor, E. M., Telli, M. L., Ward, J. H., Young, J. S., Burns, J. L., and Kumar, R. (2020). Breast cancer, version 3.2020, NCCN clinical practice guidelines in oncology. Journal of the National Comprehensive Cancer Network, 18(4), 452-478.
Jamal, A. K., Yaacob, W. A., and Din, L. B. (2009). Triterpenes from the root bark of Phyllanthus columnaris. Australian Journal of Basic and Applied Sciences, 3(2), 1428-1431.
Jeibouei, S., Akbari, M. E., Kalbasi, A., Aref, A. R., Ajoudanian, M., Rezvani, A., and Zali, H. (2019). Personalized medicine in breast cancer: pharmacogenomics approaches. Pharmacogenomics and Personalized Medicine, 12, 59-73.
Koay, Y. C., Wong, K. C., Osman, H., Eldeen, I., and Asmawi, M. Z. (2013). Chemical constituents and biological activities of Strobilanthes crispus L. Records of Natural Products, 7(1), 59-64.
Loibl, S., Poortmans, P., Morrow, M., Denkert, C., and Curigliano, G. (2021). Breast cancer. The Lancet, 397(10286), 1750-1769.
Martucciello, S., Balestrieri, M. L., Felice, F., dos Santos Estevam, C., Sant’Ana, A. E. G., Pizza, C., and Piacente, S. (2010). Effects of triterpene derivatives from Maytenus rigida on VEGF-induced Kaposi's sarcoma cell proliferation. Chemico-Biological Interactions, 183(3), 450-454.
Maughan, K. L., Lutterbie, M. A., and Ham, P. S. (2010). Treatment of breast cancer. American Family Physician, 81(11), 1339-1346.
Monkodkaew, S., Loetchutinat, C., Nuntasaen, N., and Pompimon, W. (2009). Identification and antiproliferative activity evaluation of a series of triterpenoids isolated from Flueggea virosa (Roxb. ex Willd.). American Journal of Applied Sciences, 6(10), 1800-1806.
Ndwigah, S. N., Thoithi, G. N., Mwangi, J. W., Amugune, B. K., Mugo, H. N., and Kibwage, I. O. (2013). Phytosterols from Dombeya torrida (J. F. Gmel.). East and Central African Journal of Pharmaceutical Sciences, 16(2), 44-48.
Oliveira, J. P. C., Ferreira, E. L. F., Chaves, M. H., Militão, G. C. G., Gerardo, M. V., Costa, A. M., Pessoa, C. O., de Moraes, M. O., and Costa-Lotufo, L. V. (2012). Chemical constituents of Lecythis pisonis and cytotoxic activity. Brazilian Journal of Pharmacognosy, 22(5), 1140-1144.
Shi, Q. W., Su, X. H., and Kiyota, H. (2008). Chemical and pharmacological research of the plants in genus Euphorbia. Chemical Reviews, 108(10), 4295-4327.
Siegel, R. L., Miller, K. D., and Jemal, A. (2020). Cancer statistics, 2020. CA: A Cancer Journal for Clinicians, 70(1), 7-30.
Su, M., Wu, X., Chung, H. Y., Li, Y., and Ye, W. (2009). Antiproliferative activities of five Chinese medicinal herbs and active compounds in Elephantopus scaber. Natural Product Communications, 4(8), 1025-1030.
Wongprayoon, P., and Charoensuksai, P. (2018). Cytotoxic and anti-migratory activities from hydroalcoholic extract of Euphorbia lactea Haw. against HN22 cell line. Thai Bulletin of Pharmaceutical Sciences, 13(1), 69-77.
Wongrakpanich, A., and Charoensuksai, P. (2018). Induction of apoptosis in cancer cells by plants in the genus Euphorbia. Thai Bulletin of Pharmaceutical Sciences, 13(2), 1-11.
Yessoufou, K., Elansary, H. O., Mahmoud, E. A., and Skalicka-Woźniak, K. (2015). Antifungal, antibacterial and anticancer activities of Ficus drupacea L. stem bark extract and biologically active isolated compounds. Industrial Crops and Products, 74, 752-758.