Pomegranate (Punica granatum) derived phytochemical actions towards prostate cancer

Main Article Content

Amin Saiff Johari
Nur Ayunie Zulkepli
Sarmoko Sarmoko

Abstract

Punica granatum, also known as pomegranate, is a super fruit. Prostate cancer is the most common cancer among men with 30,000 reported deaths. Due to the detrimental effects of aggressive treatment regimens, research on finding natural cancer therapeutics has been ongoing for the past decades. This is intended to repurpose plant-based therapeutics in conjunction with the existing treatment with the hope of reducing the need for synthetic medications. This review provided an overview of the evidence on the promising chemopreventive effects of phenolic compounds derived from pomegranate and their action to inhibit, arrest or reverse the progression of prostate cancer through analyzing findings from in vitro, in vivo, and clinical studies. The major beneficial phenolic constituents of pomegranate are punicalagin, ellagic acid, and gallic acid. In vitro studies have shown the reduction of prostate cancer cell growth along with increased apoptosis-inducing proteins. Clinical trials among patients intervened with pomegranate extracts showed lowered oxidative stress tissue biomarker. Further studies should include pharmacological studies with prolonged and larger clinical trials to fully identify the extent of pomegranate as a cancer intervention.

Downloads

Download data is not yet available.

Article Details

How to Cite
Johari, A. S., Zulkepli, N. A., & Sarmoko, S. (2022). Pomegranate (Punica granatum) derived phytochemical actions towards prostate cancer. Science, Engineering and Health Studies, 16, 22010002. https://doi.org/10.14456/sehs.2022.17
Section
Editorials and Reviews

References

Abdulrahman, A. O., Kuerban, A., Alshehri, Z. A., Abdulaal, W. H., Khan, J. A., and Khan, M. I. (2020). Urolithins attenuate multiple symptoms of obesity in rats fed on a high-fat diet. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 13, 3337-3348.

Adaramoye, O., Erguen, B., Nitzsche, B., Höpfner, M., Jung, K., and Rabien, A. (2017). Punicalagin, a polyphenol from pomegranate fruit, induces growth inhibition and apoptosis in human PC-3 and LNCaP cells. Chemico-Biological Interactions, 274, 100-106.

Adhami, V. M., Siddiqui, I. A., Syed, D. N., Lall, R. K., and Mukhtar, H. (2012). Oral infusion of pomegranate fruit extract inhibits prostate carcinogenesis in the TRAMP model. Carcinogenesis, 33(3), 644-651.

Al Zahrani, N. A., El-Shishtawy, R. M., and Asiri, A. M. (2020). Recent developments of gallic acid derivatives and their hybrids in medicinal chemistry: A review. European Journal of Medicinal Chemistry, 204, 112609.

Al-Harbi, S. A., Abdulrahman, A. O., Zamzami, M. A., and Khan, M. I. (2021). Urolithins: The gut based polyphenol metabolites of ellagitannins in cancer prevention, a review. Frontiers in Nutrition, 8, 647582.

Alaseem, A., Alhazzani, K., Dondapati, P., Alobid, S., Bishayee, A., and Rathinavelu, A. (2019). Matrix metalloproteinases: A challenging paradigm of cancer management. Seminars in Cancer Biology, 56, 100-115.

Alukal, J. P., and Lepor, H. (2016). Testosterone deficiency and the prostate. Urologic Clinics of North America, 43(2), 203-208.

Amri, Z., Kharroubi, W., Fidanzi-Dugas, C., Leger, D. Y., Hammami, M., and Liagre, B. (2020). Growth inhibitory and pro-apoptotic effects of ornamental pomegranate extracts in Du145 human prostate cancer cells. Nutrition and Cancer, 72(6), 932-938.

Arendt, E. K., and Zannini, E. (2013). 4 - Barley. In Cereal Grains for the Food and Beverage Industries (Arendt, E. K., and Zannini, E., Eds.), (pp. 155-201e). Sawston, Cambridgeshire: Woodhead Publishing.

Ashraf, M. A., Iqbal, M., Rasheed, R., Hussain, I., Riaz, M., and Arif, M. S. (2018). Environmental stress and secondary metabolites in plants: An overview. In Plant Metabolites and Regulation Under Environmental Stress (Ahmad, P., Ahanger, M. A., Singh, V. P., Tripathi, D. K., Alam, P., and Alyemeni, M. N., Eds.), pp. 153-167. Cambridge, MA: Academic Press.

Bai, J., Zhang, Y., Tang, C., Hou, Y., Ai, X., Chen, X., Zhang, Y., Wang, X., and Meng, X. (2021). Gallic acid: Pharmacological activities and molecular mechanisms involved in inflammation-related diseases. Biomedicine & Pharmacotherapy, 133, 110985.

Cai, T., Santi, R., Tamanini, I., Galli, I. C., Perletti, G., Bjerklund Johansen, T. E., and Nesi, G. (2019). Current knowledge of the potential links between inflammation and prostate cancer. International Journal of Molecular Sciences, 20(15), 3833.

Chaves, F. M., Pavan, I. C. B., da Silva, L. G. S., de Freitas, L. B., Rostagno, M. A., Antunes, A. E. C., Bezerra, R. M. N., and Simabuco, F. M. (2020). Pomegranate juice and peel extracts are able to inhibit proliferation, migration and colony formation of prostate cancer cell lines and modulate the Akt/mTOR/S6K signaling pathway. Plant Foods for Human Nutrition, 75(1), 54-62.

Chi, J. T., Lin, P. H., Tolstikov, V., Oyekunle, T., Chen, E. Y., Bussberg, V., Greenwood, B., Sarangarajan, R., Narain, N. R., and Kiebish, M. A. (2020). Metabolomic effects of androgen deprivation therapy treatment for prostate cancer. Cancer Medicine, 9(11), 3691-3702.

Dahiya, N. R., Chandrasekaran, B., Kolluru, V., Ankem, M., Damodaran, C., and Vadhanam, M. V. (2018). A natural molecule, urolithin A, downregulates androgen receptor activation and suppresses growth of prostate cancer. Molecular Carcinogenesis, 57(10), 1332-1341.

Demiris, G., Oliver, D. P., and Washington, K. T. (2019). Conducting a clinical trial. In Behavioral Intervention Research in Hospice and Palliative Care (Demiris, G., Oliver, D. P., and Washington, K. T., Eds.), pp. 75-94. Cambridge, MA: Academic Press.

El-Hadary, A. E., and Ramadan, M. F. (2019). Phenolic profiles, antihyperglycemic, antihyperlipidemic, and antioxidant properties of pomegranate (Punica granatum) peel extract. Journal of Food Biochemistry, 43(4), e12803.

Espín, J. C., González-Sarrías, A., and Tomás-Barberán, F. A. (2017). The gut microbiota: A key factor in the therapeutic effects of (poly)phenols. Biochemical Pharmacology, 139, 82-93.

Esteban-Fernández de Ávila, B., Ramírez-Herrera, D. E., Campuzano, S., Angsantikul, P., Zhang, L., and Wang, J. (2017). Nanomotor-enabled pH-responsive intracellular delivery of caspase-3: Toward rapid cell apoptosis. ACS Nano, 11(6), 5367-5374.

Fan, G. F., Yu, Z. G., Liang, Y. B., Xu, Z. G., and Tang, J. (2020). Effect of pomegranate extract gallic acid on the proliferation of prostate cancer cells by promoting the expression of IGFBP7. Applied Ecology and Environmental Research, 18(5), 6233-6241.

Freedland, S. J., Carducci, M., Kroeger, N., Partin, A., Rao, J. Y., Jin, Y., Kerkoutian, S., Wu, H., Li, Y., Creel, P., Mundy, K., Gurganus, R., Fedor, H., King, S. A., Zhang, Y., Heber, D., and Pantuck, A. J. (2013). A double-blind, randomized, neoadjuvant study of the tissue effects of POMx pills in men with prostate cancer before radical prostatectomy. Cancer Prevention Research, 6(10), 1120-1127.

Fritsch, M., Günther, S. D., Schwarzer, R., Albert, M.-C., Schorn, F., Werthenbach, J. P., Schiffmann, L. M., Stair, N., Stocks, H., Seeger, J. M., Lamkanfi, M., Krönke, M., Pasparakis, M., and Kashkar, H. (2019). Caspase-8 is the molecular switch for apoptosis, necroptosis and pyroptosis. Nature, 575(7784), 683-687.

García-Villalba, R., Beltrán, D., Frutos, M. D., Selma, M. V., Espín, J. C., and Tomás-Barberán, F. A. (2020). Metabolism of different dietary phenolic compounds by the urolithin-producing human-gut bacteria Gordonibacter urolithinfaciens and Ellagibacter isourolithinifaciens. Food & Function, 11(8), 7012-7022.

Gianfredi, V., Nucci, D., Abalsamo, A., Acito, M., Villarini, M., Moretti, M., and Realdon, S. (2018). Green tea consumption and risk of breast cancer and recurrence—A systematic review and meta-analysis of observational studies. Nutrients, 10(12), 1886.

Giona, S. (2021). The epidemiology of prostate cancer. In Prostate Cancer (Bott, S. R. J., and Ng, K. L., Eds), pp. 1-15. Brisbane: Exon Publications.

Görgüç, A., Gençdağ, E., and Yılmaz, F. M. (2022). Industrial pomegranate wastes and their functional benefits in novel food formulations. In Mediterranean Fruits Bio-wastes (Ramadan, M. F., and Farag, M. A., Eds.) pp. 721-738. Cham: Springer.

Gumus, Z. P., Ustun Argon, Z., and Celenk, V. U. (2020). Cold pressed pomegranate (Punica granatum) seed oil. In Cold Pressed Oils (Ramadan M. F., Ed.), pp. 597-609. Cambridge, MA: Academic Press.

Gupta, V. K., Jaiswara, P. K., Sonker, P., Rawat, S. G., and Kumar, A. (2020). Adjunct therapeutic potential of phytochemicals against cancer. In Phytochemicals as Lead Compounds for New Drug Discovery (Egbuna, C., Kumar, S., Ifemeje, J. C., Ezzat, S. M., and Kaliyaperumal, S., Eds.), pp. 117-126. Amsterdam: Elsevier.

Hu, J. R., Duncan, M. S., Morgans, A. K., Brown, J. D., Meijers, W. C., Freiberg, M. S., Salem, J.-E., Beckman, J. A., and Moslehi, J. J. (2020). Cardiovascular effects of androgen deprivation therapy in prostate cancer: contemporary meta-analyses. Arteriosclerosis, Thrombosis, and Vascular Biology, 40(3), e55-e64.

Iguchi, T., Wang, C. Y., Delongchamps, N. B., Kato, M., Tamada, S., Yamasaki, T., de la Roza, G., Nakatani, T., and Haas, G. P. (2015). Association of MnSOD AA genotype with the progression of prostate cancer. PLoS ONE, 10(7), e0131325.

Jaglanian, A., Termini, D., and Tsiani, E. (2020). Rosemary (Rosmarinus officinalis L.) extract inhibits prostate cancer cell proliferation and survival by targeting Akt and mTOR. Biomedicine & Pharmacotherapy, 131, 110717.

Jan, R., and Chaudhry, G. E. S. (2019). Understanding apoptosis and apoptotic pathways targeted cancer therapeutics. Advanced Pharmaceutical Bulletin, 9(2), 205-218.

Jarrard, D., Filon, M., Huang, W., Havighurst, T., DeShong, K., Kim, K., Konety, B. R., Saltzstein, D., Mukhtar, H., and Wollmer, B. (2021). A phase II randomized placebo‐controlled trial of pomegranate fruit extract in men with localized prostate cancer undergoing active surveillance. The Prostate, 81(1), 41-49.

Jin, J., Sklar, G. E., Oh, V. M. S., and Li, S. C. (2008). Factors affecting therapeutic compliance: A review from the patient’s perspective. Therapeutics and Clinical Risk Management, 4(1), 269-286.

Josephs, S. F., Ichim, T. E., Prince, S. M., Kesari, S., Marincola, F. M., Escobedo, A. R., and Jafri, A. (2018). Unleashing endogenous TNF-alpha as a cancer immunotherapeutic. Journal of Translational Medicine, 16(1), 242.

Kandylis, P., and Kokkinomagoulos, E. (2020). Food applications and potential health benefits of pomegranate and its derivatives. Foods, 9(2), 122.

Kumar, N., Gupta, S., Chand Yadav, T., Pruthi, V., Kumar Varadwaj, P., and Goel, N. (2019). Extrapolation of phenolic compounds as multi-target agents against cancer and inflammation. Journal of Biomolecular Structure and Dynamics, 37(9), 2355-2369.

Kuruppu, A. I., Paranagama, P., and Goonasekara, C. L. (2019). Medicinal plants commonly used against cancer in traditional medicine formulae in Sri Lanka. Saudi Pharmaceutical Journal, 27(4), 565-573.

Kushwaha, S. C., Bera, M., and Kumar, P. (2020). Pomegranate. In Antioxidants in Fruits: Properties and Health Benefits (Nayik, G. A., and Gull, A., Eds.). pp. 295-316. Singapore: Springer.

Les, F., Arbonés-Mainar, J. M., Valero, M. S., and López, V. (2018). Pomegranate polyphenols and urolithin A inhibit α-glucosidase, dipeptidyl peptidase-4, lipase, triglyceride accumulation and adipogenesis related genes in 3T3-L1 adipocyte-like cells. Journal of Ethnopharmacology, 220, 67-74.

Ma, G. Z., Wang, C. M., Li, L., Ding, N., and Gao, X. L. (2015). Effect of pomegranate peel polyphenols on human prostate cancer PC-3 cells in vivo. Food Science and Biotechnology, 24(5), 1887-1892.

Mahesar, S. A., Kori, A. H., Sherazi, S. T. H., Kandhro, A. A., & Laghari, Z. H. (2019). Pomegranate (Punica granatum) seed oil. In Fruit Oils: Chemistry and Functionality (Ramadan, M. F., Ed.), pp. 691-709. Cham: Springer.

Mohammed Saleem, Y. I., and Selim, M. I. (2020). MDM2 as a target for ellagic acid‑mediated suppression of prostate cancer cells in vitro. Oncology Reports, 44(3), 1255-1265.

NuÒez-S·nchez, M. A., GarcÌa-Villalba, R., Monedero-Saiz, T., GarcÌa-Talavera, N. V., GÛmez-S·nchez, M. B., S·nchez-¡lvarez, C., GarcÌa-Albert, A. M., RodrÌguez-Gil, F. J., Ruiz-MarÌn, M., Pastor-Quirante, F., MartÌnez-DÌaz, F., Y·Òez-GascÛn, M. J., Gonz·leö SarrÌas, A., Tom·s-Barber·n, F. A., and EspÌn, J. C. (2014). Targeted metabolic profiling of pomegranate polyphenols and urolithins in plasma, urine and colon tissues from colorectal cancer patients. Molecular Nutrition & Food Research, 58(6), 1199-1211.

Ohtake, S., Kawahara, T., Ishiguro, Y., Takeshima, T., Kuroda, S., Izumi, K., Miyamoto, H., and Uemura, H. (2018). Oxidative stress marker 8-hydroxyguanosine is more highly expressed in prostate cancer than in benign prostatic hyperplasia. Molecular and Clinical Oncology, 9(3), 302-304.

Paller, C. J., Ye, X., Wozniak, P. J., Gillespie, B. K., Sieber, P. R., Greengold, R. H., Stockton, B. R., Hertzman, B. L., Efros, M. D., Roper, R. P., Liker, H. R., and Carducci, M. A. (2013). A randomized phase II study of pomegranate extract for men with rising PSA following initial therapy for localized prostate cancer. Prostate Cancer and Prostatic Diseases, 16(1), 50-55.

Pande, G., and Akoh, C. C. (2016). Pomegranate cultivars (Punica granatum L.). In Nutritional Composition of Fruit Cultivars (Simmonds, M. S. J., and Preedy, V. R., Eds.), pp. 667-689. Cambridge, MA: Academic Press.

Panth, N., Manandhar, B., and Paudel, K. R. (2017). Anticancer activity of Punica granatum (pomegranate): A review. Phytotherapy Research, 31(4), 568-578.

Pantuck, A., Pettaway, C., Dreicer, R., Corman, J., Katz, A., Ho, A., Aronson, W., Clark, W., Simmons, G., and Heber, D. (2015). A randomized, double-blind, placebo-controlled study of the effects of pomegranate extract on rising PSA levels in men following primary therapy for prostate cancer. Prostate Cancer and Prostatic Diseases, 18(3), 242-248.

Patel, M., Nath, A., and Mayani, J. (2018). A study on physical properties of pomegranate (Punica granatum L. Punicaceae) fruits. International Journal of Chemical Studies, 6(5), 1460-1463.

Pijuan, J., Barceló, C., Moreno, D. F., Maiques, O., Sisó, P., Marti, R. M., Macià, A., and Panosa, A. (2019). In vitro cell migration, invasion, and adhesion assays: From cell imaging to data analysis. Frontiers in Cell and Developmental Biology, 7, 107.

Rongai, D., Pulcini, P., Di Lernia, G., Nota, P., Preka, P., and Milano, F. (2019). Punicalagin content and antifungal activity of different pomegranate (Punica ganatum L.) genotypes. Horticulturae, 5(3), 52.

Schwartz, E., Tzulker, R., Glazer, I., Bar-Ya’akov, I., Wiesman, Z., Tripler, E., Bar-Ilan, I., Fromm, H., Borochov-Neori, H., Holland, D., and Amir, R. (2009). Environmental conditions affect the color, taste, and antioxidant capacity of 11 pomegranate accessions’ fruits. Journal of Agricultural and Food Chemistry, 57(19), 9197-9209.

Shore, N. D., Antonarakis, E. S., Cookson, M. S., Crawford, E. D., Morgans, A. K., Albala, D. M., Hafron, J., Harris, R. G., Saltzstein, D., and Brown, G. A. (2020). Optimizing the role of androgen deprivation therapy in advanced prostate cancer: Challenges beyond the guidelines. The Prostate, 80(6), 527-544.

Uzuner, S. (2020). Pomegranate. In Nutritional Composition and Antioxidant Properties of Fruits and Vegetables (Jaiswal, A. K., Ed.), (pp. 549-563). Cambridge, MA: Academic Press.

Venkitasamy, C., Zhao, L., Zhang, R., and Pan, Z. (2019). Pomegranate. In Integrated Processing Technologies for Food and Agricultural By-Products (Pan, Z., Zhang, R., and Zicari, S., Eds.), pp. 181-216. Cambridge, MA: Academic Press.

Vickers, A. J., and Brewster, S. F. (2012). PSA velocity and doubling time in diagnosis and prognosis of prostate cancer. Journal of Clinical Urology, 5(4), 162-168.

Zharinov, G. M., Bogomolov, O. A., Neklasova, N. N., and Anisimov, V. N. (2017). Pretreatment prostate specific antigen doubling time as prognostic factor in prostate cancer patients. Oncoscience, 4(1-2), 7-13.

Zuazo-Gaztelu, I., and Casanovas, O. (2018). Unraveling the role of angiogenesis in cancer ecosystems. Frontiers in Oncology, 8, 248.