Investigation on chemosensitizing effect of cycloartane triterpenoids isolated from Gardenia sessiliflora on non-small cell lung cancer

Main Article Content

Zin Nwe Win
Sariyarach Thanasansurapong
Bamroong Munyoo
Patoomratana Tuchinda
Sunhapas Soodvilai


The mainstay treatment for non-small cell lung cancer (NSCLC) is chemotherapy. However, developing multidrug resistance to chemotherapy is still the main reason for relapse and poor clinical outcomes. P-glycoprotein (P-gp) is related to multidrug resistance and inhibitors of P-gp have been reported as chemosensitizers. Therefore, the aim of this present study was to evaluate the chemosensitizing effect of pure compounds isolated from Gardenia sessiliflora in NSCLC using the A549 cell line. The P-gp function was determined by measuring the intracellular accumulation of [3H]-digoxin or [3H]-paclitaxel, substrates of P-gp. Moreover, cell viability and cell death were evaluated by MTT and apoptosis assays, respectively. The screening results of eight pure compounds revealed that compound 8 showed the most significant increase in accumulation of [3H]-digoxin and [3H]-paclitaxel. Compound 8 at 10 µM did not affect cell viability, whereas paclitaxel significantly decreased cell viability. Interestingly, the combination of compound 8 and paclitaxel significantly decreased cell viability and demonstrated a greater increase in the apoptosis population of A549 cells than a single treatment of paclitaxel. The results of this study indicated that cycloartane triterpenoids compound 8 isolated from Gardenia sessiliflora increased the anti-cancer effect of paclitaxel in A549 cells via the inhibition of P-gp-mediated drug efflux.


Download data is not yet available.

Article Details

How to Cite
Win, Z. N., Thanasansurapong, S., Munyoo, B., Tuchinda, P., & Soodvilai, S. (2022). Investigation on chemosensitizing effect of cycloartane triterpenoids isolated from Gardenia sessiliflora on non-small cell lung cancer. Science, Engineering and Health Studies, 16, 22050013.
Health sciences


Alfarouk, K. O., Stock, C.-M., Taylor, S., Walsh, M., Muddathir, A. K., Verduzco, D., Bashir, A. H. H., Mohammed, O. Y., Elhassan, G. O., Harguindey, S., Reshkin, S. J., Ibrahim, M. E., and Rauch, C. (2015). Resistance to cancer chemotherapy: Failure in drug response from ADME to P-gp. Cancer Cell International, 15, 71.

Amin, M. L. (2013). P-glycoprotein inhibition for optimal drug delivery. Drug Target Insights, 7, 27-34.

Chang, A. (2011). Chemotherapy, chemoresistance and the changing treatment landscape for NSCLC. Lung Cancer, 71(1), 3-10.

Dela Cruz, C. S., Tanoue, L. T., and Matthay, R. A. (2011). Lung cancer: Epidemiology, etiology, and prevention. Clinics in Chest Medicine, 32(4), 605-644.

Dong, X., Mattingly, C. A., Tseng, M. T., Cho, M. J., Liu, Y., Adams, V. R., and Mumper, R. J. (2009). Doxorubicin and paclitaxel-loaded lipid-based nanoparticles overcome multidrug resistance by inhibiting P-glycoprotein and depleting ATP. Cancer Research, 69(9), 3918-3926.

Feng, L., Yuan, L., Du, M., Chen, Y., Zhang, M.-H., Gu, J.-F., He, J.-J., Wang, Y., and Cao, W. (2013). Anti-lung cancer activity through enhancement of immunomodulation and induction of cell apoptosis of total triterpenes extracted from Ganoderma luncidum (Leyss. ex Fr.) Karst. Molecules, 18(8), 9966-9981.

Georgiadis, M. S., Russell, E. K., Gazdar, A. F., and Johnson, B. E. (1997). Paclitaxel cytotoxicity against human lung cancer cell lines increases with prolonged exposure durations. Clinical Cancer Research, 3(3), 449-454.

Gonçalves, B. M. F., Cardoso, D. S. P., and Ferreira, M.-J. U. (2020). Overcoming multidrug resistance: Flavonoid and terpenoid nitrogen-containing derivatives as ABC transporter modulators. Molecules, 25(15), 3364.

Hellmann, M. D., Li, B. T., Chaft, J. E., and Kris, M. G. (2016). Chemotherapy remains an essential element of personalized care for persons with lung cancers. Annals of Oncology, 27(10), 1829-1835.

Jaromi, L., Csongei, V., Vesel, M., Abdelwahab, E. M. M., Soltani, A., Torok, Z., Smuk, G., Sarosi, V., and Pongracz, J. E. (2021). KRAS and EGFR mutations differentially alter ABC drug transporter expression in cisplatin-resistant non-small cell lung cancer. International Journal of Molecular Sciences, 22(10), 5384.

Kawahara, I., Nishikawa, S., Yamamoto, A., Kono, Y., and Fujita, T. (2020). The impact of breast cancer resistance protein (BCRP/ABCG2) on drug transport across Caco-2 cell monolayers. Drug Metabolism and Disposition, 48(6), 491-498.

Kim, R. B. (2002). Drugs as P-glycoprotein substrates, inhibitors, and inducers. Drug Metabolism Reviews, 34(1-2), 47-54.

Lai, J.-I., Tseng, Y.-J., Chen, M.-H., Huang, C.-Y. F., and Chang, P. M.-H. (2020). Clinical perspective of FDA approved drugs with P-glycoprotein inhibition activities for potential cancer therapeutics. Frontiers in Oncology, 10, 561936.

Nanayakkara, A. K., Follit, C. A., Chen, G., Williams, N. S., Vogel, P. D., and Wise, J. G. (2018). Targeted inhibitors of P-glycoprotein increase chemotherapeutic-induced mortality of multidrug resistant tumor cells. Scientific Reports, 8, 967.

Owonikoko, T. K., Ramalingam, S. S., Kanterewicz, B., Balius, T. E., Belani, C. P., and Hershberger, P. A. (2010). Vorinostat increases carboplatin and paclitaxel activity in non-small-cell lung cancer cells. International Journal of Cancer, 126(3), 743-755.

Pavek, P., Merino, G., Wagenaar, E., Bolscher, E., Novotna, M., Jonker, J. W., and Schinkel, A. H. (2005). Human breast cancer resistance protein: interactions with steroid drugs, hormones, the dietary carcinogen 2-amino-1-methyl-6-phenylimidazo(4,5-b) pyridine, and transport of cimetidine. The Journal of Pharmacology and Experimental Therapeutics, 312(1), 144-152.

Sainz de Aja, J., Dost, A. F. M., and Kim, C. F. (2021). Alveolar progenitor cells and the origin of lung cancer. Journal of Internal Medicine, 289(5), 629-635.

Shi, J. G., Zhang, Y., and Yeleswaram, S. (2011). The relevance of assessment of intestinal P-gp inhibition using digoxin as an in vivo probe substrate. Nature Reviews Drug Discovery, 10, 75.

Silva, G. L., Gil, R. R., Cui, B., Chai, H., Santisuk, T., Srisook, E., Reutrakul, V., Tuchinda, P., Sophasan, S., Sujarit, S., Upatham, S., Lynn, S. M., Farthing, J. E., Yang, S.-L., Lewis, J. A., O'Neill, M. J., Farnsworth, N. R., Cordell, G. A., Pezzuto, J. M., and Kinghorn, A. D. (1997). Novel cytotoxic ring-a seco-cycloartane triterpenes from Gardenia coronaria and G. sootepensis. Tetrahedron, 53(2), 529-538.

Soodvilai, S., Nantavishit, J., Muanprasat, C., and Chatsudthipong, V. (2011). Renal organic cation transporters mediated cadmium-induced nephrotoxicity. Toxicology Letters, 204(1), 38-42.

Strachowska, M., Gronkowska, K., Michlewska, S., and Robaszkiewicz, A. (2021). CBP/p300 bromodomain inhibitor–I–CBP112 declines transcription of the key ABC transporters and sensitizes cancer cells to chemotherapy drugs. Cancers, 13(18), 4614.

Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A., and Bray, F. (2021). Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians, 71(3), 209-249.

Szakács, G., Hall, M. D., Gottesman, M. M., Boumendjel, A., Kachadourian, R., Day, B. J., Baubichon-Cortay, H., and Di Pietro, A. (2014). Targeting the achilles heel of multidrug-resistant cancer by exploiting the fitness cost of resistance. Chemical Reviews, 114(11), 5753-5774.

Thanasansurapong, S., Tuchinda, P., Reutrakul, V., Pohmakotr, M., Piyachaturawat, P., Chairoungdua, A., Suksen, K., Akkarawongsapat, R., Limthongkul, J., Napaswad, C., and Nuntasaen, N. (2020). Cytotoxic and anti-HIV-1 activities of triterpenoids and flavonoids isolated from leaves and twigs of Gardenia sessiliflora. Phytochemistry Letters, 35, 46-52.

Wink, M., Ashour, M. L., and El-Readi, M. Z. (2012). Secondary metabolites from plants inhibiting ABC transporters and reversing resistance of cancer cells and microbes to cytotoxic and antimicrobial agents. Frontiers in Microbiology, 3, 130.

Xiao, H., Zheng, Y., Ma, L., Tian, L., and Sun, Q. (2021). Clinically-relevant ABC transporter for anti-cancer drug resistance. Frontiers in Pharmacology, 12, 648407.

Yan, X.-J., Gong, L.-H., Zheng, F.-Y., Cheng, K.-J., Chen, Z.-S., and Shi, Z. (2014). Triterpenoids as reversal agents for anticancer drug resistance treatment. Drug Discovery Today, 19(4), 482-488.

Youn, U. J., Park, E.-J., Kondratyuk, T. P., Sripisut, T., Laphookhieo, S., Pezzuto, J. M., and Chang, L. C. (2016). Anti-inflammatory triterpenes from the apical bud of Gardenia sootepensis. Fitoterapia, 114, 92-97.

Zahreddine, H., and Borden, K. L. B. (2013). Mechanisms and insights into drug resistance in cancer. Frontiers in Pharmacology, 4, 28.