Estimating water runoff from downscaling climate change scenarios using soil and water assessment tool and machine learning: A case study of Lake Tana basin in Ethiopia

Main Article Content

Kanawut Chattrairat
Aungkana Jattamart
Adisorn Leelasantitham

Abstract

Water is a fundamental natural resource necessary for life, and contributes to the development of the nation, including urbanization, shifting agricultural practices, and deforestation. These factors have both direct and indirect impacts on the watershed. This study presented machine learning for statistical downscaling as a means of hydrological modeling. A statistical downscaling model was created using a global circulation model from the community climate system model (version 4.0), and compared to different machine learning techniques, including linear regression, gaussian process, and support vector machine. The soil and water assessment tool (SWAT) was used to model climate-induced runoff and downscaling procedures. The output climate scenarios of the machine learning model were incorporated into SWAT to simulate water runoff in the study area of Lake Tana basin, Ethiopia. The simulation results of SWAT water runoff under deep learning climate conditions demonstrated the highest performance. The results could contribute to the hydrological analysis and improve the quality of statistical downscaling.

Downloads

Download data is not yet available.

Article Details

How to Cite
Chattrairat, K., Jattamart, A., & Leelasantitham, A. (2022). Estimating water runoff from downscaling climate change scenarios using soil and water assessment tool and machine learning: A case study of Lake Tana basin in Ethiopia. Science, Engineering and Health Studies, 16, 22020012. https://doi.org/10.14456/sehs.2022.62
Section
Physical sciences

References

Abatzoglou, J. T., and Brown, T. J. (2012). A comparison of statistical downscaling methods suited for wildfire applications. International Journal of Climatology, 32(5), 772-780.

Abbaspour, K., Vaghefi, S., and Srinivasan, R. (2018). A Guideline for successful calibration and uncertainty analysis for soil and water assessment: A review of papers from the 2016 international SWAT conference. Water, 10(1), 6.

Abbaspour, K. C., Faramarzi, M., Ghasemi, S. S., and Yang, H. (2009). Assessing the impact of climate change on water resources in Iran. Water Resources Research, 45(10), W10434.

Ahmadi, M., Motamedvaziri, B., Ahmadi, H., Moeini, A., and Zehtabiyan, G. R. (2019). Assessment of climate change impact on surface runoff, statistical downscaling and hydrological modeling. Physics and Chemistry of the Earth, Parts A/B/C, 114, 102800.

Akhtar, M., Ahmad, N., and Booij, M. J. (2008). The impact of climate change on the water resources of Hindukush–Karakorum–Himalaya region under different glacier coverage scenarios. Journal of Hydrology, 355(1-4), 148-163.

Anderson, W., Rosati, A., Delworth, T. L., Adcroft, A. J., Balaji, V., Benson, R., Dixon, K., Griffies, S. M., Lee, H. C., Pacanowski, R. C., Vecchi, G. A., Wittenberg, A. T., Zeng, F., and Zhang, R. (2012). Simulated climate and climate change in the GFDL CM2.5 high-resolution coupled climate model. Journal of Climate, 25(8), 2755-2781.

Ba, W., Du, P., Liu, T., Bao, A., Luo, M., Hassan, M., and Qin, C. (2018). Simulating hydrological responses to climate change using dynamic and statistical downscaling methods: a case study in the Kaidu River Basin, Xinjiang, China. Journal of Arid Land, 10(6), 905-920.

Bannwarth, M. A., Hugenschmidt, C., Sangchan, W., Lamers, M., Ingwersen, J., Ziegler, A. D., and Streck, T. (2015). Simulation of stream flow components in a mountainous catchment in northern Thailand with SWAT, using the ANSELM calibration approach. Hydrological Processes, 29(6), 1340-1352.

Berardy, A., and Chester, M. V. (2017). Climate change vulnerability in the food, energy, and water nexus: concerns for agricultural production in Arizona and its urban export supply. Environmental Research Letters, 12(3), 035004.

Birara, H., Pandey, R. P., and Mishra, S. K. (2020). Projections of future rainfall and temperature using statistical downscaling techniques in Tana Basin, Ethiopia. Sustainable Water Resources Management, 6(5), 7-17.

Booij, M. J. (2005). Impact of climate change on river flooding assessed with different spatial model resolutions. Journal of Hydrology, 303(1-4), 176-198.

Campozano, L., Tenelanda, D., Sanchez, E., Samaniego, E., and Feyen, J. (2016). Comparison of statistical downscaling methods for monthly total precipitation: case study for the Paute River basin in southern Ecuador. Advances in Meteorology, 13, 6526341.

Chattrairat, K., Wongseree, W., and Leelasantitham, A. (2021). Comparisons of machine learning methods of statistical downscaling method: case studies of daily climate anomalies in Thailand. Journal of Web Engineering, 20(5), 1397-1424.

Gent, P. R., Danabasoglu, G., Donner, L. J., Holland, M. M., Hunke, E. C., Jayne, S. R., Lawrence, D. M., Neale, R. B., Rasch, P. J., Vertenstein, M., Worley, P. H., Yang, Z. L., and Zhang, M. (2011). The Community climate system model version 4. Journal of Climate, 24(19), 4973-4991.

Githui, F., Gitau, W., Mutua, F. M., and Bauwens, W. (2009). Climate change impact on SWAT simulated streamflow in western Kenya. International Journal of Climatology, 29, 1823-1834.

Gutmann, E., Pruitt, T., Clark, M. P., Brekke, L., Arnold, J. R., Raff, D. A., and Rasmussen, R. M. (2014). An intercomparison of statistical downscaling methods used for water resource assessments in the United States. Water Resources Research, 50(9), 7167-7186.

Hadipour, S., Harun, S., Arefnia, A., and Alamgir, M. (2016). Transfer function models for statistical downscaling of monthly precipitation. Jurnal Teknologi, 78(9-4), 55-62.

Haines, A., Kovats, R. S., Campbell-Lendrum, D., and Corvalan, C. (2006). Climate change and human health: impacts, vulnerability and public health. Public Health, 120(7), 585-596.

Haylock, M. R., Cawley, G. C., Harpham, C., Wilby, R. L., and Goodess, C. M. (2006). Downscaling heavy precipitation over the United Kingdom: A comparison of dynamical and statistical methods and their future scenarios. International Journal of Climatology, 26(10), 1397-1415.

Herrera, S., Manzanas, R., Brands, S., San-Martín, D., and Gutiérrez, J. M. (2013). Reassessing statistical downscaling techniques for their robust application under climate change conditions. Journal of Climate, 26(1), 171-188.

Hughes, T. P., Kerry, J. T., Álvarez-Noriega, M., Álvarez-Romero, J. G., Anderson, K. D., Baird, A. H., Babcock, M. B., Bellwood, D. R., Berkelmans, R., Bridge, T. C., Butler, I. R., Byrne, M., Cantin, N. E., Comeau, S., Connolly, S. R., Cumming, G. S., Dalton, S. J., Diaz-Pulido, G., Eakin, C. M., Figueira, W. F., Gilmour, J. P., Harrison, H. B., Heron, S. F., Hoey, A. S., Hobbs, J. P. A., Hoogenboom, M. O., Kennedy, E. V., Kuo, C. Y., and Wilson, S. K. (2017). Global warming and recurrent mass bleaching of corals. Nature, 543, 373-377.

LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning. Nature, 521, 436-444.

Lee, D., Lee, G., Kim, S., and Jung, S. (2020). Future runoff analysis in the Mekong River basin under a climate change scenario using deep learning. Water, 12(6), 1556.

Li, C., and Fang, H. (2021). Assessment of climate change impacts on the streamflow for the Mun River in the Mekong Basin, Southeast Asia: using SWAT model. CATENA, 201, 105199.

Li, Z., and Fang, H. (2016). Impacts of climate change on water erosion: A review. Earth-Science Reviews, 163, 94-117.

Lin, F., Chen, X., and Yao, H. (2017). Evaluating the use of Nash-Sutcliffe efficiency coefficient in goodness-of-fit measures for daily runoff simulation with SWAT. Journal of Hydrologic Engineering, 22(11), 05017023.

Liu, J., Yuan, D., Zhang, L., Zou, X., and Song, X. (2016). Comparison of three statistical downscaling methods and ensemble downscaling method based on Bayesian Model Averaging in upper Hanjiang River basin, China. Advances in Meteorology, 2016, 7463963.

Mankin, K., Srinivasan, R., and Arnold, J. (2010). Soil and water assessment tool (SWAT) model: current developments and applications. American Society of Agricultural and Biological Engineers, 53(5), 1423-1431.

McMichael, A. J., Woodruff, R. E., and Hales, S. (2006). Climate change and human health: present and future risks. The Lancet, 367(9513), 859-869.

Mendes, D., and Marengo, J. A. (2009). Temporal downscaling: a comparison between artificial neural network and autocorrelation techniques over the Amazon Basin in present and future climate change scenarios. Theoretical and Applied Climatology, 100(3-4), 413-421.

Nawaz, R., Bellerby, T., Sayed, M., and Elshamy, M. (2010). Blue Nile runoff sensitivity to climate change. The Open Hydrology Journal, 4(14), 137-151.

Ngo-Duc, T., Tangang, F., Santisirisomboon, J., Cruz, F. A. T., Tan, P. V., Juneng, L., Narisma, G. T. T., Singhruck, P., Gunawan, D., Tuan, L. T., Xuan, T. N., and Aldrian, E., (2017). Performance evaluation of RegCM4 in simulating extreme rainfall and temperature indices over the CORDEX-Southeast Asia region. International Journal of Climatology, 37(3), 1634-1647.

Onyutha, C., Tabari, H., Rutkowska, A., Nyeko-Ogiramoi, P., and Willems, P. (2016). Comparison of different statistical downscaling methods for climate change rainfall projections over the Lake Victoria basin considering CMIP3 and CMIP5. Journal of Hydro-environment Research, 12, 31-45.

Patz, J. A., Campbell-Lendrum, D., Holloway, T., and Foley, J. A. (2005). Impact of regional climate change on human health. Nature, 438, 310-317.

Piao, S., Ciais, P., Huang, Y., Shen, Z., Peng, S., Li, J., Zhou, L., Liu, H., Ma, Y., Ding, Y., Friedlingstein, P., Liu, C., Tan, K., Yu, Y., Zhang, T., and Fang, J. (2010). The impacts of climate change on water resources and agriculture in China. Nature, 467, 43-51.

Sachindra, D. A., Ahmed, K., Rashid, M. M., Shahid, S., and Perera, B. J. C. (2018). Statistical downscaling of precipitation using machine learning techniques. Atmospheric Research, 212, 240-258.

Senent-Aparicio, J., Jimeno-Sáez, P., Bueno-Crespo, A., Pérez-Sánchez, J., and Pulido-Velázquez, D. (2019). Coupling machine-learning techniques with SWAT model for instantaneous peak flow prediction. Biosystems Engineering, 177, 67-77.

Setegn, S., Srinivasan, R., and Dargahi, B. (2008). Hydrological modelling in the Lake Tana basin, Ethiopia using SWAT model. The Open Hydrology Journal, 2, 49-62.

Setegn, S. G., Rayner, D., Melesse, A. M., Dargahi, B., and Srinivasan, R. (2011). Impact of climate change on the hydroclimatology of Lake Tana Basin, Ethiopia. Water Resources Research, 47(4), W04511.

Shrestha, S., Bhatta, B., Shrestha, M., and Shrestha, P. K. (2018). Integrated assessment of the climate and landuse change impact on hydrology and water quality in the Songkhram River Basin, Thailand. Science of the Total Environment, 643, 1610-1622.

Sillmann, J., Kharin, V. V., Zwiers, F. W., Zhang, X., and Bronaugh, D. (2013a). Climate extremes indices in the CMIP5 multimodel ensemble: Part 2. Future climate projections. Journal of Geophysical Research: Atmospheres, 118(6), 2473-2493.

Sillmann, J., Kharin, V. V., Zhang, X., Zwiers, F. W., and Bronaugh, D. (2013b). Climate extremes indices in the CMIP5 multimodel ensemble: Part 1. Model evaluation in the present climate. Journal of Geophysical Research: Atmospheres, 118(4), 1716-1733.

Srinivasan, R., Ramanarayanan, T. S., Arnold, J. G., and Bednarz, S. T. (1998). Large area hydrologic modeling and assessment part II: model application. Journal of the American Water Resources Association, 34(1), 91-101.

Tufa, F. G., and Sime, C. H. (2021). Stream flow modeling using SWAT model and the model performance evaluation in Toba sub-watershed, Ethiopia. Modeling Earth Systems and Environment, 7(4), 2653-2665.

Ullah, A., Salehnia, N., Kolsoumi, S., Ahmad, A., and Khaliq, T. (2018). Prediction of effective climate change indicators using statistical downscaling approach and impact assessment on pearl millet (Pennisetum glaucum L.) yield through Genetic Algorithm in Punjab, Pakistan. Ecological Indicators, 90, 569-576.

Wang, Q., Huang, J., Liu, R., Men, C., Guo, L., Miao, Y., Jiao, L., Wang, Y., Shoaib, M., and Xia, X. (2020). Sequence-based statistical downscaling and its application to hydrologic simulations based on machine learning and big data. Journal of Hydrology, 586, 124875.

Wang, Y., Bian, J., Zhao, Y., Tang, J., and Jia, Z. (2018). Assessment of future climate change impacts on nonpoint source pollution in snowmelt period for a cold area using SWAT. Scientific Reports, 8(1), 2402.

Zhou, J., He, D., Xie, Y., Liu, Y., Yang, Y., Sheng, H., Guo, H., Zhao, L., and Zou, R. (2015). Integrated SWAT model and statistical downscaling for estimating streamflow response to climate change in the Lake Dianchi watershed, China. Stochastic Environmental Research and Risk Assessment, 19(4), 1193-1210.

Zhu, X., Zhang, A., Wu, P., Qi, W., Fu, G., Yue, G., and Liu, X. (2019). Uncertainty impacts of climate change and downscaling methods on future runoff projections in the Biliu River Basin. Water, 11(10), 2130.