A Compulsory Third Party Insurance’s tag tax expiry date monitoring by using image processing
Keywords:
Image processing, Image recognition, Text processing, Machine visionAbstract
This research presents the design of the CCTV camera label enforcement process and image processing as part 4 in Step 1, details and converting to black and white images. Step 2: Finding a car location Truck camera (Frame photography) with the technique of positioning interest in the image and take it. Step 3. Improve the image of the area of interest by adjusting the picture limit that shows the border of the image that determines the boundary of the body area. Font of interest with DP techniques, estimation and improvement of received images There are appropriate degrees for the competitors compared to the template characters. Step 4 Comparing the characters in the image by using template matching techniques to get and compile the images. Baked found that the research program was able to accurately capture the tax sign from the sample image of the front of the car. The images received have a low discrepancy. But the said discrepancy affects the area of the square around the number year of the label. As a result, the program is unable to read the given number. The program's precision at 70 percent can increase the accuracy by Add local template information.
References
กิตติพงษ์ เรียงหา, นิติรตัน์ ยางงาม , วิสาข์ รังสิโยภาส. ระบบตรวจสอบทะเบียนและข้อมูลรถยนต์ภายในมหาวิทยาลัยเทคโนโลยีราชมงคลธัญบุรี [Online] ;2555. เข้าถึงได้จาก: http://www.research.rmutt.ac.th/wp-content/uploads/2014/03/133121.pdf
ดุสิตา ล่องเซ่ง. Plate Detection in Traffic Control Designed for Video Surveillance System [Online]; 2552. เข้าถึงได้จาก: http://fivedots.coe.psu.ac.th/~kom/wpcontent/uploads/2009/07/4810214.pdf
สมชาย ปฐมศิริ และ มนทิรา เกตุพัตร. ความสามารถและข้อจำกัดของเทคโนโลยี License Plate Recognition สาหรับการวิเคราะห์ข้อมลการขนส่ง [Online]; 2552. เข้าถึงได้จาก: http://bal.buu.ac.th/vcml2009/paper/S005.pdf
สุจิตรา อดุลย์เกษม, จิตด่ารง ปรีชาสุข, วุฒิ พรเสริมลักษณ์ และอิสราภรณ์ ทิพโรจน์. ต้นแบบควบคุมการเข้าใช้งานพื้นที่อันชาญฉลาดโดยการรู้จำแผ่นป้ายทะเบียนรถยนต์ [Online]; 2555. เข้าถึงได้จาก: http://202.44.34.144/nccitedoc/admin/nccit_files/NCCIT- 20110104020027.pdf
Chaofeng Lan, Fengchen Li, Yingjian Jin, Xuemei Sui,Shouqiang Kang. Research on the License Plate Recognition Based on Image Processing [Online]; 2015. Available: http://ieeexplore.ieee.org/document/7405939/
David G. Lowe. Distinctive Image Features from Scale-Invariant Keypoints. International Journal of Computer Vision; 2004.
OpenCV. Miscellaneous Image Transformations – cvtColor [Online]; 2016. Available: http://docs.opencv.org/2.4/modules/imgproc/doc/miscellaneous_transforma tions.html#cvtcolor.
OpenCV. Miscellaneous Image Transformations – threshold [Online]; 2016. Available: http://docs.opencv.org/2.4/modules/imgproc/doc/miscellaneous_transforma tions.html#threshold
OpenCV. Structural Analysis and Shape Descriptors - contour Area [Online]; 2016. Available: http://docs.opencv.org/2.4/modules/imgproc/doc/structural_analysis_and_shape_descriptors.html#contourarea
Satoshi Suzuki and others. Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing, 30(1):32–46, 1985
Sapa Chanyachatchawan. Learning OpenCV: Contour [Online]; 2010. Available: http://sapachan.blogspot.com/2010/04/detect-edge-canny-edge-contour-opencv.html
Wikipedia. Ramer–Douglas–Peucker algorithm [Online]; 2016. Available: https://en.wikipedia.org/wiki/Ramer%E2%80%93Douglas%E2%80%93Peucker_algorithm
OpenCV. Geometric Image Transformations – getPerspectiveTransform [Online]; 2016. Available: http://docs.opencv.org/2.4/modules/imgproc/doc/geometric_transformations.html#getperspectivetransform
OpenCV. (Sep 16, 2016). Geometric Image Transformations – warpPerspective [Online]; 2016. Available: http://docs.opencv.org/2.4/modules/imgproc/doc/geometric_transformations.html#warpperspective
Downloads
Published
How to Cite
Issue
Section
License
1. Every article published must be considered academic quality from 3 peers review experts per article.
2. The text or comments in this issue of science, technology and innovation journals belong to the author of the article. The journal organizers do not need to agree.
3. The editorial department of Science, Technology and Innovation Journal does not claim copy rights but provides references.