Interpenetrating Polymerization of Styrene in Polypropylene and Poly(Ethylene Terephthalate) Using Microwave Irradiation

Main Article Content

Warisara Boonthong
Attachai Pornpaiboonsuk
Peerasak Paoprasert

Abstract

Abstract


The preparation of interpenetrating polymer is one of the most efficient methods for modifying or improving polymer properties. In this work, interpenetrating polymerization of styrene in polypropylene (PP) and poly(ethylene terephthalate) (PET) using microwave irradiation was investigated. The immobilization percentage of polystyrene as a function of the initiator/monomer ratio, reaction time, and microwave power was studied. Immobilization percentages up to 30 and 16 % in PP and PET, respectively, were achieved in less than 20 min of microwave time. The interpenetrating polymers showed superior chemical stability in both acidic and basic media for several days over their pristine counterparts while their thermal and mechanical properties were comparable, indicating that the new materials reported in this research can be used as substitutes for various applications. Furthermore, the microwave method developed in this work provides efficient, versatile, and simple method for the preparation of chemically stable interpenetrating polymers, and can be used to modify the structure and properties of polymeric substrates. 


Keywords: interpenetrating polymer; poly(ethylene terephthalate); polypropylene; polystyrene; microwave irradiation

Downloads

Download data is not yet available.

Article Details

How to Cite
Boonthong, W., Pornpaiboonsuk, A., & Paoprasert, P. (2018). Interpenetrating Polymerization of Styrene in Polypropylene and Poly(Ethylene Terephthalate) Using Microwave Irradiation. Thai Journal of Science and Technology, 7(6), 567–580. https://doi.org/10.14456/tjst.2018.53
Section
วิทยาศาสตร์กายภาพ
Author Biographies

Warisara Boonthong

Department of Chemistry, Faculty of Science and Technology, Thammasat University, Rangsit Centre, Khlong Nueng, Khlong Luang, Pathum Thani 12120

Attachai Pornpaiboonsuk

Department of Chemistry, Faculty of Science and Technology, Thammasat University, Rangsit Centre, Khlong Nueng, Khlong Luang, Pathum Thani 12120

Peerasak Paoprasert

Department of Chemistry, Faculty of Science and Technology, Thammasat University, Rangsit Centre, Khlong Nueng, Khlong Luang, Pathum Thani 12120

References

Bajpai, S.K., Chand, N. and Agrawal, A., 2015, Microwave-assisted synthesis of carboxymethyl psyllium and its development as semi-interpenetrating network with poly(acrylamide) for gastric delivery, J. Bioact. Compat. Polym. 30: 241-257.
Barrett, L.W. and Sperling, L.H., 1993a, Semi-interpenetrating polymer networks composed of poly(ethylene terephthalate) and castor oil: Synthesis, structure, and properties, Polym. Eng. Sci. 33: 913-922.
Barrett, L.W., Shaffer, O.L. and Sperling, L.H., 1993b, Semi-interpenetrating polymer networks composed of poly(ethylene terephthalate) and vernonia oil, J. Appl. Polym. Sci. 48: 953-968.
Barrett, L.W., Sperling, L.H., Gilmer, J.W. and Mylonakis, S.G. 1994, Semi-interpenetrating polymer networks composed of poly(ethylene terephthalate) and castor oil, in interpenetrating polymer networks, Amer. Chem. Soc. 239: 489-516.
Behling, R.E., Williams, B.A., Staade, B.L., Wolf, L.M. and Cochran, E.W., 2009, Influence of graft density on kinetics of surface-initiated atrp of polystyrene from montmorillonite, Macromolecules 42: 1867-1872.
Bhattacharya, A. and Misra, B.N., 2004, Grafting: A versatile means to modify polymers: Techniques, factors and applications, Prog. Polym. Sci. 29: 767-814.
Chen, R., Feng, W., Zhu, S., Botton, G., Ong, B. and Wu, Y., 2006, Surface-initiated atom transfer radical polymerization grafting of poly(2,2,2-trifluoroethyl methacrylate) from flat silicon wafer surfaces, J. Polym. Sci. A: Polym. Chem. 44: 1252-1262.
Chen, W. and McCarthy, T.J., 1998, Chemical surface modification of poly(ethylene terephthalate), Macromolecules 31: 3648-3655.
Cheng, Z., Li, J., Yan, J., Kang, L., Ru, X. and Liu, M., 2013, Synthesis and properties of a novel superabsorbent polymer composite from microwave irradiated waste material cultured Auricularia auricula and poly (acrylic acid-co-acrylamide), J. Appl. Polym. Sci. 130: 3674-3681.
Dhahri, M., Abed, A., Lajimi, R.H., Mansour, M.B., Gueguen, V., Abdesselem, S.B., Chaubet, F., Letourneur, D., Meddahi-Pellé, A. and Maaroufi, R.M., 2011, Grafting of dermatan sulfate on polyethylene terephtalate to enhance biointegration, J. Biomed. Mater. Res. A 98A: 114-121.
Faghihi, K. and Hagibeygi, M., 2003, New polyamides containing azobenzene unites and hydantoin derivatives in main chain: Synthesis and characterization, Eur. Polym. J. 39: 2307-2314.
Fan, X., Lin, L. and Messersmith, P.B., 2006, Surface-initiated polymerization from TiO2 nanoparticle surfaces through a biomimetic initiator: A new route toward polymer-matrix nanocomposites, Compos. Sci. Technol. 66: 1195-1201.
Gloria, A., De Santis, R., Ambrosio, L., Causa, F. and Tanner, K.E., 2011, A multi-component fiber-reinforced PHEMA-based Hydrogel/HAPEXTM Device for customized intervertebral disc prosthesis, J. Biomater. Appl. 25: 795-810.
Gupta, N. and Srivastava, A.K., 1994, Interpenetrating polymer networks: A review on synthesis and properties, Polym. Int. 35: 109-118.
Herranz, D., Escudero-Cid, R., Montiel, M., Palacio, C., Fatás, E. and Ocón, P., 2018, Poly(vinyl alcohol) and poly (benzimidazole) blend membranes for high performance alkaline direct ethanol fuel cells, Renew. Energ. 127: 883-895.
Hochart, F., De Jaeger, R. and Levalois-Grützmacher, J., 2003, Graft-polymerization of a hydrophobic monomer onto PAN textile by low-pressure plasma treatments, Surface Coatings Technol. 165: 201-210.
Holmes, S., Zeronian, S.H. and Hwang, P., 1993, Base hydrolysis of poly(ethylene terephthalate) in methanolic and aqueous solutions, J. Macromol. Sci. A 30: 207-218.
Hota, M.K., Bera, M.K. and Maiti, C.K., 2012, Flexible metal-insulator-metal capacitors on polyethylene terephthalate plastic substrates, Semiconductor Sci. Technol. 27: 105001.
Kamboj, S., Singh, K., Tiwary, A.K. and Rana, V., 2015, Optimization of microwave assisted Maillard reaction to fabricate and evaluate corn fiber gum-chitosan IPN films, Food Hydrocoll. 44: 260-276.
Konieczna, M., Markiewicz, E. and Jurga, J., 2010, Dielectric properties of polyethylene terephthalate/polyphenylene sulfide/barium titanate nanocomposite for application in electronic industry, Polym. Eng. Sci. 50: 1613-1619.
Li, D., Liu, Z., Han, B., Song, L., Yang, G. and Jiang, T., 2002, Preparation of nanometer dispersed polypropylene/polystyrene interpenetrating network using supercritical CO2 as a swelling agent, Polymer 43: 5363-5367.
Li, L., Zhao, N. and Liu, S., 2012, Versatile surface biofunctionalization of poly(ethylene terephthalate) by interpenetrating polymerization of a butynyl monomer followed by “Click Chemistry”, Polymer 53: 67-78.
Li, Y., Tan, L.W., Hao, X.T., Ong, K.S., Zhu, F. and Hung, L.S., 2005, Flexible top-emitting electroluminescent devices on polyethylene terephthalate substrates, Appl. Phys. Lett. 86: 153508.
Liu, S., Zhao, N. and Rudenja, S., 2010, Surface Interpenetrating Networks of Poly(ethylene terephthalate) and Polyamides for Effective Biocidal Properties, Macromol. Chem. Phys. 211: 286-296.
Lloyd, M.R., 2007, Polymer Blends. In Polymer Blends, Carl Hanser Verlag GmbH & Co., KG.
Madhumitha, G. and Mary Saral, A., 2012, Screening of larvicidal activity of Crossandra infundibuliformis extracts against Anopheles stephensi, Aedes aegypti and Culex quinquefasciatus, Int. J. Pharm. Pharm. Sci. 4: 485-488.
Mark, J.E., 2009, Polymer Data Handbook, Oxford University Press, Oxford.
Meena, R., Lehnen, R. and Saake, B., 2014, Microwave-assisted synthesis of kC/Xylan/PVP-based blend hydrogel materials: Physicochemical and rheological studies, Cellulose 21: 553-568.
Memetea, T. and Stannett, V., 1979, Radiation grafting to poly(ethylene terephthalate) fibres, Polymer 20: 465-468.
Muñoz-Muñoz, F., Ruiz, J.C., Alvarez-Lorenzo, C., Concheiro, A. and Bucio, E., 2012, Temperature- and pH-sensitive interpenetrating polymer networks grafted on PP: Cross-linking irradiation dose as a critical variable for the performance as vancomycin-eluting systems, Radiation Phys. Chem. 81: 531-540.
Obiweluozor, F.O., Maharjan, B., Gladys Emechebe, A., Park, C.H. and Kim, C.S., 2018, Mussel-inspired elastic interpenetrated network hydrogel as an alternative for anti-thrombotic stent coating membrane, Chem. Eng. J. 347: 932-943.
Odian, G., 2004, Principles of Polymerization, John Wliey & Sons, New Jersey.
Paoprasert, P., Moonrinta, S. and Kanokul, S., 2014, Highly efficient interpenetrating polymerization of styrene and 4-vinylpyridine with poly(ethylene terephthalate) using benzoyl peroxid, Polym. Int. 63: 1041-1046.
Park, S., Bearinger, J.P., Lautenschlager, E.P., Castner, D.G. and Healy, K.E., 2000, Surface modification of poly(ethylene terephthalate) angioplasty balloons with a hydrophilic poly(acrylamide-co-ethylene glycol) interpenetrating polymer network coating, J Biomed. Mater. Res. 53: 568-576.
Paszun, D. and Spychaj, T., 1997, Chemical recycling of poly(ethylene terephthalate), Ind. Eng. Chem. Res. 36: 1373-1383.
Polaczek, J., Pielichowski, J., Pielichowski, K., Tylek, E. and Dziki, E., 2005, A new method of poly(aspartic acid) synthesis under microwave radiation, Pol. J. Chem. Technol. 50: 812-820.
Rudenja, S., Zhao, N. and Liu, S., 2010, Surface interpenetrating networks of polyacrylamide in poly(ethylene terephthalate) as a means of surface modification, Eur. Polym. J. 46: 2078-2084.
Shivashankar, M. and Mandal, B.K., 2012, A review on interpenetrating polymer network, Int. J. Pharm. Pharm. Sci. 4: 1-7.
Sun, X., DenHartog, E., Zhang, X. and McCord, M., 2018, Study of poly(N-isopropylacrylamide) grafted cotton fabrics initiated by atmospheric pressure plasma, Appl. Surf. Sci. 453: 182-191.
Švorčík, V., Kubová, O., Slepička, P., Dvořánková, B., Macková, A. and Hnatowicz, V., 2006, Structural, chemical and biological properties of carbon layers sputtered on polyethyleneterephtalate, J. Mater. Sci. Mater. Med. 17: 229-234.
Tally, M. and Atassi, Y., 2015, Optimized synthesis and swelling properties of a pH-sensitive semi-IPN superabsorbent polymer based on sodium alginate-g-poly(acrylic acid-co-acrylamide) and polyvinylpyrrolidone and obtained via microwave irradiation, J. Polym. Res. 22: 181.
Tomoaki, M., Junji, S., Nobuo, K., Shingo, M., Hideyuki, K., Norio, K., Motoyasu, K. and Atsushi, T., 2009, Surface modification of polypropylene molded sheets by means of surface-initiated atrp of methacrylates, Polym. J. 41: 547-554.
Tsai, C.E., Lin, C.W., Rick, J. and Hwang, B.J., 2011, Poly(styrene sulfonic acid)/poly(vinyl alcohol) copolymers with semi-interpenetrating networks as highly sulfonated proton-conducting membranes, J. Power Sources 196: 5470-5477.
Xue, T.J. and Wilkie, C.A., 1995, The interaction of vinyl monomers and poly (ethylene terephthalate) in the presence of various initiators produces a physical mixture, not a graft copolymer, J. Appl. Polym. Sci. 33: 2753-2758.
Yoshioka, T., Motoki, T. and Okuwaki, A., 2001, Kinetics of hydrolysis of poly(ethylene terephthalate) powder in sulfuric acid by a modified shrinking-core model, Ind. Eng. Chem. Res. 40: 75-79.
Zhang, J., Wang, L. and Zhao, Y., 2013, Understanding interpenetrating-polymer-network-like porous nitrile butadiene rubber hybrids by their long-period miscibility, Mater. Design 51: 648-657.
Zhao, N. and Liu, S., 2011a, Thermoplastic semi-IPN of polypropylene (PP) and polymeric N-halamine for efficient and durable antibacterial activity, Eur. Polym. J. 47: 1654-1663.
Zhao, N., Zhanel, G.G. and Liu, S., 2011b, Regenerability of antibacterial activity of interpenetrating polymeric N-halamine and poly(ethylene terephthalate), J. Appl. Polym. Sci. 120: 611-622.