น้ำหมักชีวภาพกระตุ้นการเจริญและเพิ่มความต้านทานโรคในกล้วยหอมทอง

Main Article Content

เกวลิน อินทนนท์
ธัญพิสิษฐ์ พวงจิก

Abstract

Abstract


The novel 2 formulas of the effective biofermented solutions, BM-1 and BM-2, were developed from 2 types of concentrated effective microorganism (EM) solutions (EM1 and EM2). Acid-base properties of the concentrated EM (EM1 and EM2) and the new formulas (BM-1 and BM-2) were evaluated. The BM-1 displayed higher pH value (pH 6) in comparison to that of EM1 while BM-2 showed the pH value similar to that of EM2 (pH 3.6-4.8). Types of microorganisms in both BM-1 and BM-2 were determined. Four groups of microorganisms, i.e. lactic acid bacteria, yeast, actinomycetes and fermenting fungi (as a major), were demonstrated in BM-1. For BM-2, it was also found the same 4 groups of microorganisms, together with photosynthetic bacteria as a major. Growth enhancement and disease resistance efficiency of the BM-1 and BM-2, were performed through Hom-Thong banana (Kluai Hom-Thong). Young offshoots with 1.5-meter height were cultivated and repeatedly nourished by BM-1 and BM-2 via root absorption once a week, for 6 months. Thereafter, leaves from each treatments were extracted and evaluated the amount of peroxide (PO) and polyphenol oxidase (PPO) by biochemical techniques. The results revealed that BM-2 increased the production of PO and PPO in the highest amount (p £ 0.05). In addition, BM-2 enhanced the height of the trunk but not the diameter in comparison to BM-1. 


Keywords: Kluai Hom-Thong; biofermented solution; effective microorganism; banana; disease tolerance

Article Details

How to Cite
อินทนนท์ เ., & พวงจิก ธ. (2019). น้ำหมักชีวภาพกระตุ้นการเจริญและเพิ่มความต้านทานโรคในกล้วยหอมทอง. Thai Journal of Science and Technology, 8(4), 345–354. https://doi.org/10.14456/tjst.2019.42
Section
วิทยาศาสตร์ชีวภาพ
Author Biographies

เกวลิน อินทนนท์

สาขาวิชาเทคโนโลยีชีวภาพ คณะวิทยาศาสตร์และเทคโนโลยี มหาวิทยาลัยธรรมศาสตร์ ศูนย์ลำปาง ตำบลปงยางคก อำเภอห้างฉัตร จังหวัดลำปาง 52190

ธัญพิสิษฐ์ พวงจิก

สาขาวิชาเทคโนโลยีการเกษตร คณะวิทยาศาสตร์และเทคโนโลยี มหาวิทยาลัยธรรมศาสตร์ ศูนย์รังสิต ตำบลคลองหนึ่ง อำเภอคลองหลวง จังหวัดปทุมธานี 12120

References

สำนักงานเศรษฐกิจการเกษตร, 2559, สารสนเทศเศรษฐกิจการเกษตรรายสินค้า, เอกสารสถิติการเกษตรเลขที่ 402, กระทรวงเกษตรและสหกรณ์, กรุงเทพฯ.
อภิชาติ ศรีสอาด และจันทรา อู่สุวรรณ, 2556, คู่มือการเพาะปลูกกล้วยเศรษฐกิจเงินล้าน, พิมพ์ครั้งที่ 1, นาคา อินเตอร์มีเดีย, กรุงเทพฯ, 144 น.
Cavero, P.A.S., Hanada, R.E., Gasparotto, L., Coelho Neto, R A. and Souza, J.T.D., 2015, Biological control of banana black Sigatoka disease with Trichoderma, Ciência Rural 45: 951-957.
Falih, A.M.K. and Wainwright, M., 1995, Nitrification in vitro by a range of filamentous fungi and yeasts, Lett. Appl. Microbiol. 21: 18-19.
Formowitz, B., Elango, F., Okumoto, S., Müller, T. and Buerkert, A., 2007, The role of “effective microorganisms” in the composting of banana (Musa ssp.) residues, J. Plant Nutr. Soil Sci. 170: 649-656.
Hammerschmidt, R., Nuckles, E.M. and Kuć, J., 1982, Association of enhanced peroxidase activity with induced systemic resistance of cucumber to Colletotrichum lagena rium, Physiol. Plant Pathol. 20: 73-82.
Hendry, G.A., Houghton, J.D. and Brown, S.B., 1987, The degradation of chlorophyll – a biological enigma, New Phytol. 107: 255-302.
Higa, T. and Chinen, M.N., 1998, EM Treatments of Odor, Waste Water, and Environment Problems, College of Agriculture, Okinawa, Japan, University of Ryukyus.
Higa, T. and Wididana, G.N., 1991, Changes in the soil microflora induced by effective microorganisms, pp.153-161, Proceedings of the First International Conference on Kyusei Nature Farming. US Department of Agriculture, Washington, DC, USA.
Javaid, A., 2009, Growth, nodulation and yield of black gram [Vigna mungo (L.) Hepper] as influenced by biofertilizers and soil amendments, Afr. J. Biotechnol. 8: 5711-5717.
Kavino, M., Manoranjitham, S.K., Balamohan, T.N., Kumar, N., Karthiba, L. and Samiyappan, R., 2011, Enhancement of growth and Panama wilt resistance in Banana by in vitro co-culturing of banana plantlets with PGPR and endophytes, pp. 277-282, In International Symposium on Tropical and Subtropical Fruits 1024.
Korres, A.M., Buss, D.S., Ventura, J.A. and Fernandes, P.M., 2011, Candida krusei and Kloeckera apis inhibit the causal agent of pineapple fusariosis, Fusarium guttiform-me, Fungal Biol. 115: 1251-1258.
Mayer, A.M., Harel, E. and Ben-Shaul, R., 1966, Assay of catechol oxidase – a critical comparison of methods, Phytochemistry 5: 783-789.
Nel, B., Steinberg, C., Labuschagne, N. and Viljoen, A., 2006, The potential of nonpathogenic Fusarium oxysporum and other biological control organisms for suppressing fusarium wilt of banana, Plant Pathol. 55: 217-223.
Nutaratat, P., Srisuk, N., Arunrattiyakorn, P. and Limtong, S., 2014, Plant growth-promoting traits of epiphytic and endophytic yeasts isolated from rice and sugar cane leaves in Thailand, Fungal Biol. 118: 683-694.
Paul, S., 1999, Bacteria in Biology, Biotechnology and Medicine, 6th Ed., John Wiley & Sons, Inc., New Jersey.
Postgate, J., 1998, The origins of the unit of nitrogen fixation at the University of Sussex, Notes Rec. R. Soc. 52: 355-362.
Saravanan, T., Bhaskaran, R. and Muthusamy, M., 2004, Pseudomonas fluorescens induced enzymological changes in banana roots (cv. Rasthali) against Fusarium wilt disease, Plant Pathol. J. 3: 72-80.
Sariah, M., Lim, C.L. and Tariq, S.A., 2001, Use of biochemical marker as a measure of resistance towards fusarium wilt of banana [in Malaysia], In International Workshop on the Banana Fusarium Wilt Disease, Genting Highlands Resort, Malaysia, October 18-20, 1999.
Smith, S.E. and Read, D.J., 2010, Mycorrhizal Symbiosis, Academic Press, Burlington, Massachusetts.
Wood, M.T., Miles, R. and Tabora, P., 1997, EM fermented plant extract and EM5 for controlling pickleworm (Diaphania nitidalis) in organic cucumber, School of Natural Resources, University of Missouri, USA and EARTH College, Limon, Costa Rica.
Zieslin, N. and Zaken, R.B., 1993, Peroxidase activity and presence of phenolic substances in peduncles of rose flowers, Plant Physiol. Biochem. 31: 333-339.