In vitro Anti-oxidative Activity and Tyrosinase Inhibition of Inca Peanut (Plukenetia volubilis L.) Shell Extracts from Different Preparation Methods

Main Article Content

Mathukorn Sainakham
Lapatrada Mungmai


In the present investigation, the bioactivities of the inca peanut (Plukenetia volubilis L.) shell extracts prepared by various methods were determined for food and cosmetic applications. The inca peanut shells were extracted and determined total phenolic content, anti-oxidation by DPPH assay, tyrosinase inhibition and phytochemical analysis. The results showed that the extract from non-cooked shell before extracting by the hot mixture of water and ethanol (NM2) gave the highest total phenolic content at 129.95±7.58 mg GAE/g and the highest free radical scavenging activity at SC50 of 0.12±0.03 mg/mL. The highest inhibition of tyrosinase activity was presented by the extract from roasted shell before extracting by cold ethanol (RE1) at IC50 of 6.90±1.40 mg/mL. In addition, the selected extracts contained the phytochemical contents of flavonoids and triterpenoids. This study has demonstrated the anti-oxidation and tyrosinase inhibition potential of the inca peanut shell extracts.


Download data is not yet available.

Article Details

Author Biographies

Mathukorn Sainakham

Division of Cosmetic Science, School of Pharmaceutical Sciences, University of Phayao, Maeka, Muang, Phayao 56000

Lapatrada Mungmai

Division of Cosmetic Science, School of Pharmaceutical Sciences, University of Phayao, Maeka, Muang, Phayao 56000


Allen, S.E., Grimshaw, H.M., Parkinson, J.A. and Quarmby, C., 1974, Chemical Analysis of Ecological Materials, Blackwell Scientific Publications, Oxford.
Arroyo-Acevedo, J.L., Herrera-Calderon, O., Cisneros-Hilario, C.B., Chávez-Asmat, R., Anampa-Guzmán, A., Enciso-Roca, E. and Pari-Olarte, B., 2018, Antimutagenic Effect of Plukenetia volubilis (Sacha inchi) oil in BALB/c mice, Ann. Res. Rev. Biol. 1: 1-8.
Bhandary, S.K., Kumari, S., Bhat, V.S., Sharmila, K. and Bekal, M.P., 2012, Preliminary phytochemical screening of various extracts of Punica granatum peel, whole fruit and seeds, J. Health Sci. 2: 35-38.
Chang, T.S., 2009, An updated review of tyrosinase inhibitors, Int. J. Mol. Sci. 10: 2440-2475.
Chirinos, R., Necochea, O., Pedreschi, R. and Campos, D., 2016, Sacha inchi (Plukenetia volubilis L.) shell: An alternative source of phenolic compounds and antioxidants, Int. J. Food Sci. Technol. 51: 986-993.
Choi, C.W., Kim, S.C., Hwang, S.S., Choi, B.K., Ahn, H.J., Lee, M.Y. and Kim, S.K., 2002, Antioxidant activity and free radical scavenging capacity between Korean medicinal plants and flavonoids by assay-guided comparison, Plant Sci. 163: 1161-1168.
Corrales, M., García, A.F., Butz, P. and Tauscher, B., 2009, Extraction of anthocyanins from grape skins assisted by high hydrostatic pressure, J. Food Eng. 90: 415-421.
Cuellar, M., Giner, R., Recio, M., Manez, S. and Rıos, J., 2001, Topical anti-inflammatory activity of some Asian medicinal plants used in dermatological disorders, Fitoterapia 72: 221-229.
Evans, W., 1991, Trease and Evans' Pharmacog nosy, 13th Ed., Bailliere Tindall, London.
Fanali, C., Dugo, L., Cacciola, F., Beccaria, M., Grasso, S., Dacha, M. andMondello, L., 2011, Chemical characterization of Sacha inchi (Plukenetia volubilis L.) oil, J. Agric. Food Chem. 59: 13043-13049.
Jayaprakasha, G., Girennavar, B. and Patil, B.S., 2008, Radical scavenging activities of Rio Red grapefruits and Sour orange fruit extracts in different in vitro model systems, Bioresour. Technol. 99: 4484-4494.
Manosroi, A., Sainakham, M., Chankhampan, C., Manosroi, W. and Manosroi, J., 2016, In vitro anti-cancer activities of Job’s tears (Coix lachryma-jobi Linn.) extracts on human colon adenocarcinoma, Saudi J. Biol. Sci. 23: 248-256.
Masuda, T., Yamashita, D., Takeda, Y. and Yonemori, S., 2005, Screening for tyrosinase inhibitors among extracts of seashore plants and identification of potent inhibitors from Garcinia subelliptica, Biosci. Biotechnol. Biochem. 69: 197-201.
Nascimento, A.K.L., Melo-Silveira, R.F., Dantas-Santos, N., Fernandes, J.M., Zucolotto, S.M., Rocha, H.A.O. and Scortecci, K.C., 2013, Antioxidant and antiproliferative activities of leaf extracts from Plukenetia volubilis Linneo (Euphorbiaceae), Evid. Base. Compl. Alternative Med. 2013(1): 950272.
de Souza, A.H.P., Gohara, A.K., Rodrigues, Â.C., de Souza, N.E., Visentainer, J.V. and Matsushita, M., 2013, Sacha inchi as potential source of essential fatty acids and tocopherols: multivariate study of nut and shell, Acta Sci. Technol. 35.
Prasad, K.N., Yang, E., Yi, C., Zhao, M. and Jiang, Y., 2009, Effects of high pressure extraction on the extraction yield, total phenolic content and antioxidant activity of longan fruit pericarp, Innov. Food Sci. Emerg. Technol. 10: 155-159.
Rispail, N., Morris, P. and Webb, K.J., 2005, Phenolic Compounds: Extraction and Analysis, Springer, Dordrecht.
Singanusong, R. and Jiamyangyuen, S., 2018, Effects of maturity on chemical composition and antioxidant activity of sacha inchi (Plukenetia volubilis L.) cultivated in Thailand, Walailak J. Sci. Tech. 17.
Spigno, G. and de Faveri, D.M., 2007, Antioxidants from grape stalks and marc: Influence of extraction procedure on yield, purity and antioxidant power of the extracts, J. Food Eng. 78: 793-801.
Štěrbová, L., Hlásná Čepková, P., Viehmannová, I. and Huansi, D.C., 2017, Effect of thermal processing on phenolic content, tocopherols and antioxidant activity of sacha inchi kernels, J. Food Process Pres. 41: e12848.
Tachibana, Y., Kikuzaki, H., Lajis, N.H. and Nakatani, N., 2001, Antioxidative activity of carbazoles from Murraya koenigii leaves, J. Agric. Food Chem. 49: 5589-5594.
Tazawa, S., 2001, Tyrosinase inhibitors of Brazilian propolis, Nat. Med. 55: 111-118.
Trease, G. and Evans, S., 2002, Pharmacog nosy, Tindal, London.
Wang, S., Zhu, F. and Kakuda, Y., 2018, Sacha inchi (Plukenetia volubilis L.): Nutritional composition, biological activity, and uses, Food Chem. 265: 316-328.
Zhang, Q., Zhang, J., Shen, J., Silva, A., Dennis,
D.A. and Barrow, C.J., 2006, A simple 96-well microplate method for estimation of total polyphenol content in seaweeds, J. Appl. Phycol. 18: 445-450.