ผลของความเข้มแสงจากหลอดแอลอีดีต่อการเจริญของยอดอ้อยพันธุ์ขอนแก่น 3 ที่เลี้ยงในระบบไบโอรีแอคเตอร์แบบจมชั่วคราว
Main Article Content
Abstract
The intensity of light is one of the most important factors for photosynthesis and the developmental processes of plants propagated in the tissue culture systems. The white light from light-emitting diodes (LEDs) and fluorescent lamps was used to compare the effect of different photosynthetic photon flux densities (PPFDs) on the growth of sugarcane cv. Khon Kaen 3 shoots culturing in a temporary immersion bioreactor (TIB). Light treatment composed of six different PPFDs of LED light including 68, 88, 108, 128, 148 and 168 µmol/m2/s, and 68 µmol/m2/s of fluorescent light. The growth parameters, including fresh shoot weight (FW), dry shoot weight (DW), shoot numbers (SN), shoot length (SL), first shoot length (1SL), and shoot cluster diameter (SCD) were recorded. The results showed that the different LED light intensities promoted the sugarcane shoots by increasing FW, DW, SL, and SCD comparable to those subjected to the fluorescent light. The LED light intensity of 128 µmol/m2/s enhanced shoots’ growth by increasing in FW, DW, SN, and SCD. Besides, SL and 1SL of sugarcane shoots were induced by LED light intensity of 68 µmol/m2/s. On the other hand, the FW, SL, and SN decreased with increasing intensity of LED light to 168 µmol/m2/s.
Article Details
บทความที่ได้รับการตีพิมพ์เป็นลิขสิทธิ์ของคณะวิทยาศาสตร์และเทคโนโลยี มหาวิทยาลัยธรรมศาสตร์ ข้อความที่ปรากฏในแต่ละเรื่องของวารสารเล่มนี้เป็นเพียงความเห็นส่วนตัวของผู้เขียน ไม่มีความเกี่ยวข้องกับคณะวิทยาศาสตร์และเทคโนโลยี หรือคณาจารย์ท่านอื่นในมหาวิทยาลัยธรรมศาสตร์ ผู้เขียนต้องยืนยันว่าความรับผิดชอบต่อทุกข้อความที่นำเสนอไว้ในบทความของตน หากมีข้อผิดพลาดหรือความไม่ถูกต้องใด ๆ
References
Batista, D.S., Felipe, S.H.S., Silva, T.D., Castro, K.M., Mamedes-Rodrigues, T.C., Miranda, N.A., Ríos-Ríos, A.M., Faria, D.V., Fortini, E.A., Chagas, K., Torres-Silva, G., Xavier, A., Arencibia, A.D. and Otoni, W.C., 2018, Light quality in plant tissue culture: does it matter?, In vitro Cell. Dev. Biol. Plant 54: 195-215.
Bula, R.J., Morrow, T.W., Tibbitts, T.W., Barta, D.J., Ignatius, R.W. and Martin, T.S., 1991, Light-emitting diodes as a radiation source for plants, Hort. Sci. 26: 203-205.
Cioc, M., Kalisz, A., Zupnik, M. and Pawtowska, B., 2019, Different LED light intensities and 6-Benzyladenine concentrations in relation to shoot development, leaf architecture, and photosynthetic pigments of Gerbera jamesonii Bolus in vitro, Agronomy 9: 358-373.
Darko, E., Heydarizadeh, P., Schoefs, B. and Sabzalian, M.R., 2014, Photosynthesis under artificial light: the shift in primary and secondary metabolism, Phil. Trans. R Soc. B 369: 20130243.
Distabanjong, C., Distabanjong, K., Woo, J.G. and Jang, S.W., 2018, Production of phytoplasma-free plants in sugarcane (Saccharum spp.) using temporary immersion bioreactor, Acta Hort. 1205: 727-734.
Escalona, M., Samson, G., Borroto, C. and Desjardins, Y., 2003, Physiology of effects of temporary immersion bioreactors on micropropagated pineapple plantlets, In vitro Cell. Dev. Biol. Plant 39: 651-656.
Kwon, A.R., Cui, H.Y., Lee, H., Shin, H., Kang, K.S. and Park, S.Y., 2015, Light quality affects shoot regeneration, cell division, and wood formation in elite clones of Populus eurmericana, Acta Physiol. Plant 37: 65-73.
Lin, K.H., Huang, M.Y., Huang, W.D. Hsu, M.H., Yang, Z.W., Yang, C.M., 2013, The effects of red, blue, and white light-emitting diodes on the growth, development, and edible quality of hydroponically grown lettuce (lactuca sativa l. Var. Capitata). Sci. Hort. 150: 86-91.
Neto, A.R., Chagas, E.A., Costa, B.N.S., Chagas, P.C. and Vendrame, W.A., 2020, Photomixotrophic growth response of sugarcane in vitro plantlets using different light intensities and culture vessel types, In Vitro Cell. Dev. Biol. Plant. 56: 504-514.
Nhut, D.T., Takamura, T., Watanabe, H. and Tanaka, M., 2003, Efficiency of a novel culture system by using light-emitting diode (LED) on in vitro and subsequent growth of micropropagated banana plantlets, Acta
Hort. 616: 121-127
Office of Agricultural Economics, Agricultural Economic Information, Available Source: http://www.oae.go.th, May 8, 2020. (in Thai)
Rocha, P.S.G., Oliveira, R.P. and Scivittaro, W.B., 2013, Sugarcane micropropagation using light emitting diodes and adjustment in growth-medium sucrose concentration, Cienc. Rural. 43: 1168-1173.
Seiler, F., Soll, J. and Bölter, B., 2017, Comparative phenotypical and molecular analyses of Arabidopsis grown under fluorescent and LED light, Plants 6: 24-38.
Silva, M., Silva, A., Oliveira, A., Oliveira-Filho, R., Camara, T., Willadino, L., Gouveia-Neto, A., 2016, The effect of spectral light quality on in vitro culture of sugarcane, Acta Sci. Biol. Sci. 38: 157-161.
Tesfa, M. and Ftwi, M., 2018, In vitro plant regeneration of sugarcane (Saccharum spp.) variety inoculated under different levels of plant growth regulators, J. Plant Biochem. Physiol. 6: 227-231.
Topoonyanont, N., Pumisutapon, P., Klayraung, S. and Poonnoy, P., 2017, Temporary immersion bioreactors for large scale Globba micropropagation, Acta Hort. 1155: 51-58.
Waman, A.A., Bohra, P., Sathyanarayana, B.N., Umesha, K., Gowda, B. and Ashok, T.H., 2015, In vitro shoot multiplication and root induction in silk banana variety Nanjanagud Rasabale as influenced by monochromatic light spectra, Proc. Natl. Acad. Sci. India
Sect. B Biol. Sci. 86: 577-584.
Watt, M.P., 2012, The status of temporary immersion system (TIS) technology for plant micropropagation, Afr. J. Biotechnol. 11: 14025-14035.
Wongmetha, O., Chot-im-udom, N., Youngpong, S. and Ruangkul, T., 2019, The influence of plant growth regulators on increase of microtuber induction in potato, Thai Agric. Res. J. 37(1): 70-77. (in Thai)
Yeh, N. and Chung, J.P., 2009, High-brightness LEDs-energy efficient lighting sources and their potential in indoor plant cultivation, Renew. Sust. Energy Rev. 13: 2175-2180.
Zhang, M., Zhao, D., Ma, Z., Li, X. and Xiao, Y.,
2009, Growth and photosynthetic capability of Momordica grosvenori plantlets grown photoautotrophically in response to light intensity, Hort. Sci. 44: 757-763.
Zhou, M., Guan, Q., Wei, Y. and Zhang, Z., 2008, Effects of sucrose concentration and light intensity on growth and photosynthesis of ginger plantlets in vitro, Chinese J. Appl. Environ. Biol. 14: 356-361.