อิทธิพลของแบบจำลองทางสถิติและจำนวนเครื่องหมายที่ส่งผลต่อความแม่นยำของการทำนายค่าจีโนมสำหรับลักษณะผลผลิตน้ำยางในต้นยางพารา
Main Article Content
บทคัดย่อ
การทำนายค่าจีโนมเป็นวิธีการทำนายค่าการผสมพันธุ์จีโนมของลักษณะปริมาณในพืชและสัตว์ โดยใช้ความผันแปรทางพันธุกรรมในระดับนิวคลีโอไทด์ที่มีการกระจายอยู่ทั่วทั้งจีโนม ซึ่งสามารถลดระยะเวลาวงจรการปรับปรุงพันธุ์พืชและสัตว์ ความแม่นยำของการทำนายค่าจีโนมขึ้นอยู่กับหลายปัจจัย การศึกษานี้จึงศึกษาผลกระทบของจำนวนเครื่องหมายและแบบจำลองทางสถิติที่มีผลต่อความแม่นยำการทำนายค่าจีโนมลักษณะผลผลิตน้ำยางในฤดูฝนและฤดูแล้งของยางพารา (Hevea brasiliensis) 170 ต้น เครื่องหมาย SNP จำนวน 14,155 เครื่องหมาย แบบจำลองทางสถิติที่ใช้ในการศึกษานี้ ได้แก่ ridge regression-best linear unbiased prediction (RR-BLUP) และ Bayesian LASSO (least absolute shrinkage and selection operator, BL) ซึ่งต่างกันที่ข้อกำหนดสมมติฐานเกี่ยวกับการกระจายตัวของอิทธิพลเครื่องหมาย ผลการศึกษาพบว่า RR-BLUP มีความแม่นยำในการทำนายที่สูงกว่า BL ทั้งลักษณะผลผลิตน้ำยางในฤดูฝนและฤดูแล้ง แสดงให้เห็นว่าลักษณะผลผลิตน้ำยางถูกควบคุมด้วยยีนหลายตำแหน่งไม่มียีนหลักที่ส่งผลต่อความแปรปรวนฟีโนไทป์ นอกจากนี้พบว่าความแม่นยำในการทำนายค่าจีโนมเพิ่มขึ้นเมื่อเพิ่มจำนวนเครื่องหมายขึ้นจนถึงจำนวนที่เหมาะสม ผลการศึกษานี้สามารถนำไปใช้เป็นแนวทางนำไปสู่การปรับปรุงพันธุ์ด้วยวิธีการคัดเลือกจีโนมในยางพารา
Article Details
บทความที่ได้รับการตีพิมพ์เป็นลิขสิทธิ์ของคณะวิทยาศาสตร์และเทคโนโลยี มหาวิทยาลัยธรรมศาสตร์ ข้อความที่ปรากฏในแต่ละเรื่องของวารสารเล่มนี้เป็นเพียงความเห็นส่วนตัวของผู้เขียน ไม่มีความเกี่ยวข้องกับคณะวิทยาศาสตร์และเทคโนโลยี หรือคณาจารย์ท่านอื่นในมหาวิทยาลัยธรรมศาสตร์ ผู้เขียนต้องยืนยันว่าความรับผิดชอบต่อทุกข้อความที่นำเสนอไว้ในบทความของตน หากมีข้อผิดพลาดหรือความไม่ถูกต้องใด ๆ
เอกสารอ้างอิง
พิชิต สพโชค, พิสมัย จันทุมา และพนัส แพชนะ, 2550, การกรีดยางและการใช้สารเคมีเร่งน้ำยาง, พิมพ์ครั้งที่ 2, โรงพิมพ์ชุมนุมสหกรณ์การเกษตรแห่งประเทศไทย จำกัด, กรุงเทพฯ.
Ballesta, P., Bush, D., Silva, F.F. and Mora, F., 2020, Genomic predictions using low-density SNP markers, pedigree and GWAS information: A case study with the non-model species Eucalyptus cladocalyx, Plants 9: 99.
Campos, G.D.L., Naya, H., Gianola, D., Crossa, J., Legarra, A., Manfredi., Weigel, K. and Cotes, J.M., 2009, Predicting quantitative traits with regression models for dense molecular markers and pedigree, Genetics 182: 375-385.
Cericola, F., Jahoor, A., Orabi, J., Andersen, J.R., Janss, L.L. and Jensen, J., 2017, Optimizing training population size and genotyping strategy for genomic prediction using association study results and pedigree information: A case of study in advanced wheat breeding lines, PLoS One 12(1): e0169606.
Chanroj, V., Rattanawong, R., Phunichai, T., Tangphatsornrung, S. and Ukoskit, K., 2017, Genome-wide association mapping of latex yield and girth in amazonian accessions of Hevea brasiliensis grown in a suboptimal climate zone, Genomics 109: 475-484.
Clark, S.A., Hickey, J.M. and van der Werf, J.H., 2011, Different models of genetic variation and their effect on genomic evaluation, Genet. Sel. Evol. 43: 18.
Cros, D., Mbo-Nkoulou, L., Bell, J.M., Oum, J., Masson, A., Soumahoro, M., Tran, D.M., Achour, A., Guen, V.L. and Demange, A.C., 2019, Within-family genomic selection in rubber tree (Hevea Brasiliensis) increases genetic gain for rubber production, Ind. Crops Prod. 138: 111464.
Daetwyler, H.D., Pong-Wong, R., Villanueva, B. and Woolliams, J.A., 2010, The impact of genetic architecture on genome-wide evalua tion methods, Genetics 185: 1021-1031.
Duangjit, J., Causse, M. and Sauvage, C., 2016, Efficiency of genomic selection for tomato fruit quality, Mol Breed. 36(3).
Gianola, D. and van Kaam, J.B.C.H.M., 2008, Reproducing kernel Hilbert spaces regression methods for genomic assisted prediction of quantitative traits, Genetics 178: 2298-2303.
Grattapaglia, D., 2017, Status and Perspectives of Genomic Selection in Forest Tree Breeding, pp. 199-249, In Varshney, R.K., Roorkiwal, M. and Sorrells, M.E. (Eds.), Genomic Selection for Crop Improvement, Springer International Publishing, New York.
Hayes, B.J., Bowman, P.J., Chamberlain, A.J. and Goddard, M.E., 2009, Invited review – Genomic selection in dairy cattle: Progress and Challenges, J. Dairy Sci. 92: 433-443.
Honarvar, M. and Rostami, M., 2013, Accuracy of genomic prediction using RR-BLUP and Bayesian LASSO, Eur. J. Exp. Biol. 3: 42-47.
Howard, R., Carriquiry, A.L. and Beavis, W.D., 2014, Parametric and nonparametric statistical methods for genomic selection of traits with additive and epistatic genetic architectures, G3-Genes Genomes Genet. 4: 1027-1046.
Kwong, Q.B., Ong, A.L., Teh, C.K., Chew, F.T., Tammi, M., Mayes, S., Kulaveerasingam, H., Yeoh, S.H., Harikrishna, J.A. and Appleton, D.R., 2017, Genomic selection in commercial perennial crops: Applicability and improvement in oil palm (Elaeis guineensis Jacq.), Sci. Rep. 7: 2872/1-2872/9.
Macciotta, N.P., Gaspa, G., Carnier, P. and Dimauro, C., 2009, Pre-selection of most significant SNPS for the estimation of genomic breeding values, BMC Proceed. 3(Suppl. 1): S14.
Meuwissen, T.H.E., Hayes, B.J. and Goddard, M.E., 2001, Prediction of total genetic value using genome-wide dense marker maps, Genetics 157: 1819-1829.
Park, T. and Casella, G., 2008, The Bayesian Lasso, ASA 103: 681-686.
Resende, J.M., Mun, O.P., Resende, M., Garrick, D., Fernando, R., Dav’ s, J., Jokela, E., Martin, T., Peter, G. and Kirst, M., 2012, Accuracy of genomic selection methods in a standard data set of Loblolly Pine (Pinus taeda L.), Genetics 190: 1503-1510.
Solberg, T.R., Sonesson, A.K., Woolliams, J.A. and Meuwissen T.H.E., 2008, Genomic selection using different marker types and densities, J. Animal Sci. 86: 2447-2454.
Zhang, Z., Ding, X., Liu, J. and Zhang, Q., 2011, Accuracy of genomic prediction using low-density marker panels, J. Dairy Sci. 94: 3642-3650.