สารต้านจุลินทรีย์และสายสัมพันธ์เชิงวิวัฒนาการของราจากดินป่าชายเลน

Main Article Content

พฤทฐิภร ศุภพล
สิตา ปรีดานนท์

Abstract

Abstract


This research aims to study the potential of antimicrobial metabolites of soil fungi and phylogenetic relationships of the potential fungal isolates based on molecular techniques. A total of 106 fungal isolates were obtained from mangrove soil. They were cultured in potato dextrose broth at room temperature without shaking for 3 weeks. Culture broth were extracted with ethyl acetate (broth ethyl acetate, BE). Fungal mycelia were extracted with ethyl acetate (cell ethyl acetate, CE) and hexane (cell hexane, CH). Antimicrobial activities of 318 extracts were tested by the colorimetric broth microdilution method. Eight extracts from 6 isolates showed the highest potential against Staphylococcus aureus and methicillin-resistant Staphylococcus aureus (MRSA). The best active extracts consisting of BE from TSU-MF1 (Talaromyces flavus) and CE from TSU-MF2 (Penicillium sp.) and TSU-MF5 (Xylaria feejeensis) were most active against MRSA (MIC/MBC, 64/128 µg/ml). Six active isolates were identified based on nucleotide sequences of ITS region and 28S ribosomal DNA. They belong to two Phyla including Ascomycota 5 isolates (Talaromyces flavus Penicillium sp. Hongkongmyces pedis Dothidiomycetes sp. and Xylaria feejeensis) and Basidiomycota 1 isolate (Subulicystidium sp.). Especially, these results confirmed that fungi from mangrove soil provide high species diversity and have the potential to produce antimicrobial agents. 


Keywords: soil fungi; antimicrobial activity; phylogenetic relationship; mangrove soil

Article Details

Section
Biological Sciences
Author Biographies

พฤทฐิภร ศุภพล

สาขาวิชาชีววิทยา คณะวิทยาศาสตร์ มหาวิทยาลัยทักษิณ วิทยาเขตพัทลุง ตำบลบ้านพร้าว อำเภอป่าพะยอม จังหวัดพัทลุง 93110

สิตา ปรีดานนท์

ศูนย์พันธุวิศวกรรมและเทคโนโลยีชีวภาพแห่งชาติ (ไบโอเทค) ตำบลคลองหนึ่ง อำเภอคลองหลวง จังหวัดปทุมธานี 12120

References

[1] Singh, A., Luthra, U. and Saxena, R.K., 2017, Brief of review on bioactive metabolites of fungus isolated from soil, IJIR. 3: 1460-1466.
[2] Hawksworth, D.L., 2001, The magnitude of fungal diversity: The 1.5 million species eatimate revisited, Mycol. Res. 105: 1422-1432.
[3] Livermore, D.M., 2011, Discover research: The scientific challenge of finding new antibiotics, J. Antimicrob. Chemother. 66: 1941-1944.
[4] Monton, J.B., 2005, Fungi, pp. 141-161, Yarnell, D., Ed., Principles and application of soil microbiology, 2nd Ed., Pearson Education, Inc., New Jersey.
[5] Cazar, M.E., Schmeda-Hirschmann, G. and Astudillo, L., 2005, Antimicrobial butylolactone I derivatives from the Ecuadorain soil fungus Aspergillus terreus Thorn. Var terreus, World J. Microbiol. Biotechnol. 21: 1067-1075.
[6] Xioa-Yan, S., Qing-Tao, S., Shu-Tao, X., Xiu-Lan, C., Cai-Yun, S. and Yu-Zhong, Z., 2006, Broad-spectrum antimicrobial activity and high stability of trichokonins from Trichoderma koningii SMF2 against plant pathogens, FEMS Microbiol. Rev. 260; 119-125.
[7] Gharaei-Fathabad, E., Tajick-Ghanbary, M. A. and Shahronkri, N., 2009, Antimicrobial properties of Penicillium species isolated from agriculture soils of Northern Iran, Res. J. Toxins 1: 1-7.
[8] Jachowshi, N.R.A., Quak, M.S.Y., Friess, D.A., Duangnamon, D., Webb, E.L. and Ziegler, A.D., 2013, Mangrove biomass estimation in Southwest Thailand using machine learning, Appl. Geogr. 45: 311-321.
[9] Barnett, H.L. and Hunter, B.B., 1998, Illustrated Genera of Imperfect Fungi, Prentice Hall, Inc., New York.
[10] Clinical and Laboratory Standards Institute (CLSI), 2002a, Reference method for broth dilution antimicrobial susceptibility tests for bacteria that grow aerobically, Approved standard M7-A4.Clinical and Laboratory Standards Institute, Wayne, Pa.
[11] Clinical and Laboratory Standards Institute (CLSI), 2002b, Reference method for broth dilution antimicrobial susceptibility testing of yeasts.Approved standard M27-A2, Clinical and Laboratory Standards Institute, Wayne, Pa.
[12] O'Donnell, K., Cigelnik, E., Weber, N.S. and Trappe, J.M., 1997, Phylogenetic relationships among Ascomycetous truffles and the true and false morels inferred from 18S and 28S ribosomal DNA sequence analysis, Mycologia 89: 48-65.
[13] Hall, T., 2005, BioEdit: Biological Sequence Alignment Editor for Windows 95/98/NT/ XP, Available: http://www.mbio.ncsu.edu/ bioedit/page1.html.
[14] Thompson, J.D., Higgins, D.G. and Gibson, T.J., 1994. Clustal W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and wwight matrix choice, Nucl. Acids Res. 22: 4673-4680.
[15] Swofford, D.L., 2002. PAUP*: Phylogenetic Analysis Using Parsimony (*and Other Methods), Version 4, Sinauer Associates, Sunderland, Massachusetts.
[16] Kishino, H. and Hasegawa, M., 1989, Evaluation of the maximum likelihood estimate of the evolutionary tree topologies from DNA sequence data, and the branching order in hominoidea, J. Mol. Evol. 29: 170-179.
[17] Huelsenbeck, J.P. and Ronquist, F., 2001, MrBayes: Bayesian inference of phylo-genetic trees, Bioinformatics 17: 754-755.
[18] Nylander, J.A.A., 2004, MrModeltest v. 2.0, Evolutionary Biology Centre, Uppsala University, Sweden.
[19] Borwornwiriyapan, K., 2013, Screening of soil fungi from plant genetic conservation project area, Rajjaprabha dam, Suratthani province which produced antimicrobial substances. M.Sc. Thesis, Prince of Songkla University, Songkhla.
[20] Standing, D. and Killham, K., 2007, The Soil Environment, pp. 1-22, Elsas, J.D.V., Jansson, J.K. and Trevors, J.T. (Eds.), Modern Soil Microbiology, 2nd Ed., CRC press, Boca Raton.
[21] Yongchalermchai, C., Nilnond, C. and Pechkep, S., 2011, A study of diversity of soils and morphology with their chemical and physical properties, The complete research report, Prince of Songkla University, Songkhla.
[22] Rao, V.V.P. and Brahmaji, R. P., 2014, Physico-Chemical analysis of mangrove soil in the Machilipatnam coastal region, Krishna district, Andhra Pradesh, IJERT. 3: 10-12.
[23] Das, S., De, M., Ray, R., Ganguly, D., Jana, T.K. and De, T.K., 2011, Salt tolerant culturable microbes accessible in the soil of the Sundarban mangrove forest, India Open Ecol. J. 2: 35-40.
[24] Mazumder, P.M., Mazumder, R., Mazumder, A. and Sasmal, D.S., 2002, Antimicrobial activity of the mycotoxin citrinin obtained from the fungus Penicillium citrinum, Anc. Sci. Life 3: 191-197.
[25] Thatoi, H., Behere, B.C., Dangar, T.K. and Mishra, R.R., 2010, Microbial biodiversity in mangrove soils of Bhitarkanika, Odisha, India Int. J. Environ. Biol. 2: 50-58.
[26] Sahoo, K. and Dhal, N.K., 2009, Potential microbial diversity in mangrove eco-systems: A review, Indian J. Mar. Sci. 38: 249-256.
[27] Wongthong, S., Bangrak, P., Phongpaichit, S., Somrithpol, S. and Songkumarn, P., 2014. Antimicrobial activity of soil fungi from Khao Nan National Park, Nakhon Si Thammarat province, Thailand, JPAM. 8: 2999-3010.
[28] Elias, B.C., Said, S., de Albuquerque, S. and Pupo, M.T., 2006, The influence of culture conditions on the biosynthesis of secondary metabolites by Penicillium verrucosum Dierck, Microbiol. Res. 161: 273-280.
[29] Talukdar, S., Talukdar, M., Buragohian, M., Yadav, A., Yadav, R.N.S. and Bora, T.C., 2016, Enhanced candicidal compound production by a new soil isolate Penicillium verruculosum MKH7 under submerged fermentation, BMC. Microbiol. 16: 1-12.
[30] Lihan, S., Lin, C.D., Ahmad, I., Sinang, F.M., Hua, N.K. and Sallehin, A.A., 2014, Antimicrobial producing microbes isolated from soil sample collected from Nanga Merit Forest in Sarawak, Malaysian Borneo, Euro. J. Exp. Bio. 4: 494-501.
[31] Khalil, A.M.A., El-sheikh, H.H. and Sultan, M.H., 2013, Distribution of fungi in mangrove soil of coastal areas at Nabq and Ras Mohammed Protectorates, J. Curr. Microbiol. Appl. Sci. 2: 264-274.
[32] Tsang, C.C.C., Chan, J.F.W., Trendell-Sm, N.J., Ngan, A.H.Y., Ling, I.W.H., Yuen, K.Y., Lau, S.K.P. and Wood, P.C.Y., 2014, Subcutaneous phaeohyphomycosis in a patient with IgG4-related sclerosing disease caused by a novel ascomycete, Hongkongmyces pedis gen. et sp. nov.: First report of human infection associated with the family Lindgomycetaceae, Med. Mycol. 52: 736-747.
[33] Thorn, R.G., Reddy, C.A., Harris, D. and Pual, E.A., 1996, Isolation of saprophytic Basidiomycetes from soil, Appl. Environ. Microbiol. 62: 4288-4292.