การใช้ขนาดเม็ดตะกอนและปริมาณตะกั่วและสังกะสีเพื่อระบุชั้นตะกอนดินที่มาจากการเกิดเหตุการณ์สึนามิปี พ.ศ. 2547 (ค.ศ. 2004) จังหวัดภูเก็ต ในพื้นที่รองรับน้ำทิ้งคลองบางใหญ่ อ่าวภูเก็ต

Main Article Content

ธงชัย สุธีรศักดิ์
เพ็ญศิริ เอกจิตต์

Abstract

Abstract


Two sediment cores for the introduction study collected from Bang-Yai estuary, Phuket bay, Phuket province, Thailand were used to assess the levels of metal pollution (Pb and Zn) in sediment samples. Two grain-size fractions (>150 µm and <150 µm) of the sediment samples and heavy metal concentrations in 2003 were used to identify the layer of sediment during the Tsunami in 2547 B.E. (2004 C.E.). The results showed that the sediment layers in Core A are disturbed by the tsunami deposition at 24-26 cm depth, whereas the redistribution of the sediment was detected at a depth of 34-35 cm in Core B. In addition, it was found that the sedimentation rate after the tsunami event in Core A and B are 2.17 and 2.87 cm yr-1, respectively. In this study, the disturbed layers of the sediment samples by Tsunami deposition were attributed to the uniform trend of vertical sediment texture composition (grain-size >150 µm and <150 µm) from a depth of 9 cm. toward the end of Core A and from 7.5 cm. toward the end of Core B, respectively. 


Keywords: heavy metal; Tsunami; accumulation; sediment

Downloads

Download data is not yet available.

Article Details

Section
วิทยาศาสตร์กายภาพ
Author Biographies

ธงชัย สุธีรศักดิ์

คณะเทคโนโลยีและสิ่งแวดล้อม มหาวิทยาลัยสงขลานครินทร์ วิทยาเขตภูเก็ต ถนนวิชิตสงคราม ตำบลกะทู้ อำเภอกะทู้ จังหวัดภูเก็ต 83120

เพ็ญศิริ เอกจิตต์

คณะเทคโนโลยีและสิ่งแวดล้อม มหาวิทยาลัยสงขลานครินทร์ วิทยาเขตภูเก็ต ถนนวิชิตสงคราม ตำบลกะทู้ อำเภอกะทู้ จังหวัดภูเก็ต 83120

References

[1] Lougheed, B.C., Snowball, I., Moros, M., Kabel, K., Muscheler, R., Virtasalo, J.J. and Wacker, L., 2012, Using an independent geochronology based on palaeomagnetic secular variation (PSV) and atmospheric Pb deposition to data Baltic Sea sediments and infer 14C reservoir age, Quat. Sci. Rev. 42: 43-58.
[2] Lougheed, B.C., Filipsson, H.L. and Snowball, I., 2013, Large spatial variations in coastal 14C reservoir age – a case study from the Baltic Sea, Clim. Past. 9: 1015-1028.
[3] Suteerasak, T., Elming, S-A., Possnert, G., Ingri, J. and Widerlund, A., 2017, Deposition rates and 14C apparent ages of Holocene sediments in the Bothnian Bay of the Gulf of Bothnia using paleo-magnetic dating as a reference, Marine Geol. 383: 1-13.
[4] Renberg, I., Persson, M.W. and Emteryd, O., 1994, Pre-industrial atmospheric lead contamination detected in Swedish lake sediments, Nature 368: 323-326.
[5] Hong, S., Candelone, J.P., Patterson, C.C. and Boutron, C.F., 1994, Greenland ice evidence of hemispheric lead pollution two millennia ago by Greek and Roman civilizations, Science 265: 1841-1843.
[6] Snowball, I., Zillén, L., Ojala, A. Saarinen, T. and Sandgren, P., 2007, FENNOSTACK and FENNORPIS: Varve dated Holocene palaeomagnetic secular variation and relative palaeointensity stacks for Fennoscandia, Earth Planet. Sci. Lett. 255: 106-116.
[7] Kastens, K.A. and Cita, M.B., 1981, Tsunami-induced sediment transport in the abyssal Mediterranean Sea, Geol. Soc. Amer. Bull. 92: 845-857.
[8] Shi, S., Dawson, A.G. and Smith, D.E., 1995, Coastal Sedimentation Associated with the December 12th, 1992 Tsunami in Flores, Indonesia.,Tsunami: 1992-1994, Birkhäuser Basel: 525-536.
[9] Szczuciński, W., Chaimanee, N., Niedzielski, P., Rachlewicz, G., Saisuttichai, D., Tepsuwan, T., Lorenc, S. and Siepak, J. 2006, Environmental and Geological Impacts of the 26 December 2004 Tsunami in Coastal Zone of Thailand – Overview of Short and Long-Term Effects, Polish J. of Environ. Stud. 15: 793-810.
[10] Sugawara, D., Goto, K. and Jaffe, B.E., 2014, Numerical models of tsunami sediment transport – Current understanding and future directions, Marine Geol. 352: 295-320.
[11] Suteerasak, T. and Bhongsuwan, T., 2008, Contamination of Heavy Metals Al, As, Cu, Cr, Mn, Ni, Pb, Sn, Zn and Fe in Sediment from Bang-Yai River in Phuket Province, KMUTT Res. Develop. J. 31(4): 767-779. (In Thai)
[12] Garson, M.S., Young, B., Mitchell, A.H.G. and Tait, B.A.R., 1975, The geology of the tin belt in Peninsular Thailand around Phuket, Phangnga and Takua Pa, Natural Environment Research Council, Institute of Geological Sciences, London: HMSO.
[13] EPA., 1996, Method 3052: Microwave Assisted Acid Digestion of Siliceous and Organically Based Matrices, Revision 0.
[14] Bhongsuwan, T. and Bhongsuwan, D., 2002, Concentration of heavy metals, Mn, Fe, Ni, Pb, Cr and Cd in bottom sediment of the Outer Songkhla Lake deposited between the year B.E. 2520-2538, Songklanakarin J. Sci. Technol. 24(1): 90-106. (In Thai)
[15] National Research Council Canada, 2014, MESS-4: Marine Sediment Reference Material for Trace Metals and other Constituents. (Online), Available source: http://www.nrccnrc.gc.ca/eng/solutions/advisory/crm/certificates/mess_4.html, November 18, 2016.
[16] Potts, P.J., 1992, A Handbook of Silicate Rock Analysis, Blackie & Son Ltd., BishopBriggs, Glasow G642NZ, London, 622 p.
[17] Suteerasak, T. and Bhongsuwan, T., 2006, Concentration of heavy metal As, Pb, Mn, Ni, Sn, Zn, Cr, Fe and radon gas in bottom sediment from abandoned tin mines in the Phuket Province, Songklanakarin J. Sci. Technol. 28(3): 641-654. (In Thai)
[18] Smith, D., Wall, W., Branes, R. Simons, B. and Chen, Z., 2010, Surfer Version 9.9.785 Surface Mapping Systeme (Computer program). Golden Software, Inc.
[19] Jain, C.K. and Ram, D., 1997, Adsorption of lead and zinc on bed sediments of the River Kali, Water Res. 31: 154-162.
[20] Lin, J.G. and Chen, S.Y., 1998, The relationship between adsorption of heavy metal and organic matter in river sediments, Environ. Int. 24: 345-352.
[21] Balsinha, M., Fernandes, C., Oliveira, A., Rodrigues, A. and Taborda, R., 2014, Sediment transport patterns on the Estremadura Spur continental shelf: Insights from grain-size trend analysis, J. Sea Res. 93: 28-32.
[22] Pan, B., Pang, H., Zhang, D., Guan, Q., Wang, L., Li, F., Guan, W., Cai, A. and Sun, X., 2015, Sediment grain-size characteristics and its source implication in the Ningxia-Inner Mongolia sections on the upper reaches of the Yellow River, Geomorphology 246: 255-262.
[23] Heathershaw, A.D. and Thorne, P.D., 1985, Sea-bed noises reveal role of turbulent bursting phenomenon in sediment transport by tidal currents, Nature 316: 339-342.
[24] Bagnold, R.A., 1962, Autosuspension of transported sediment; turbidity currents, Proc. Royal Soc. London Ser. A 265: 315-319.
[25] Dawson, A.G. and Shi, S. 2000, Tsunami Deposits, Pure Appl. Geophys. 157: 875-897.
[26] Potipat, J., Tangkrock-olan, N. and Helander, H.F., 2015, Distribution of Selected Heavy Metals in Sediment of the River Basin of Coastal Area of Chanthaburi Province, Gulf of Thailand, Environ. Asia 8: 133-143.
[27] French, J., Spencer, T., Murray, A. and Arnold, N., 1995, Geostatistical analysis of sediment deposition in two small tidal wetlands, Norfolk, U.K., J. Coastal Res. 11: 308-321.
[28] George, D.A. and Hill, P.S. 2008, Wave climate, sediment supply and the depth of the sand–mud transition: A global survey, Marine Geol. 254: 121-128.
[29] Prodger, S., Russell, P., Davidson, M., Miles, J. and Scott, T., 2016, Understanding and predicting the temporal variability of sediment grain size characteristics on high-energy beaches, Marine Geol. 376: 109-117.