การศึกษาเสถียรภาพและประสิทธิภาพการใช้งานของอนุภาคดูดซับที่เป็นสารแม่เหล็กสำหรับวิเคราะห์ฟอสเฟตปริมาณน้อยในน้ำ

Main Article Content

วันประเสริฐ พุทธวงศ์
กมลทิพย์ เสรีนนท์ชัย
พนิดา พรหมพินิจ
ดวงกมล วิบูลย์รัตนศรี
สุพล มนะเกษตรธาร

Abstract

This work focused on the stability and performance of magnetite (Fe3O4) as a magnetic solid-phase extraction for trace analysis of phosphate in aqueous sample. Fe3O4 particle was synthesized by the chemical co-precipitation method and confirmed by FT-IR spectroscopy. The FT-IR spectrum of the synthesized Fe3O4 showed the characteristic peak in the region of 570-580 cm-1 corresponding to Fe-O vibration. Size distribution of Fe3O4 was measured by laser scattering technique. The results varied from 30.3±23.3 to 87.4±61.6 µm for 5 representative batches. The synthesized Fe3O4 was then tested its performance with our developed extraction method for phosphate analysis. Standard phosphate content of 1.2 µgP and 2 mg Fe3O4 was used as the test sample. Under acidic condition (pH 3.0), phosphate ion was adsorbed onto the surface of Fe3O4 for 15 min to reach maximum adsorption. Subsequently, desorption process occurs within 1 min only using 1.00 mL of 1.5 mol/L NaOH. The synthesized Fe3O4 performed adsorption capacity about 4.9±0.6 mgP/g.  Moreover, the batch-to-batch consistency showed no significant extraction efficiency among them by statistical analysis with ANOVA test at 95 % confident level (Fstat 2.04 < Fcrit 3.48). The reproducible extraction was good with the average RSD of 4.2 % (n = 15) even though particle sizes were varied between batch-to-batch. In addition, the Fe3O4 can be reused at least 100 times by washing with acetate buffer pH 3.0 between samples. Under ambient temperature and dry storage condition, the Fe3O4 was effectively used at least 4 months without diminished extraction efficiency. 


Keywords: magnetic particle; magnetite; stability and performance; extraction of phosphate

Article Details

Section
Physical Sciences
Author Biographies

วันประเสริฐ พุทธวงศ์

สาขาวิชาเคมี คณะวิทยาศาสตร์และเทคโนโลยี มหาวิทยาลัยธรรมศาสตร์ ศูนย์รังสิต ตำบลคลองหนึ่ง อำเภอคลองหลวง จังหวัดปทุมธานี 12120

กมลทิพย์ เสรีนนท์ชัย

สาขาวิชาเคมี คณะวิทยาศาสตร์และเทคโนโลยี มหาวิทยาลัยธรรมศาสตร์ ศูนย์รังสิต ตำบลคลองหนึ่ง อำเภอคลองหลวง จังหวัดปทุมธานี 12120

พนิดา พรหมพินิจ

ศูนย์นาโนเทคโนโลยีแห่งชาติ สำนักงานพัฒนาวิทยาศาสตร์และเทคโนโลยีแห่งชาติ อุทยานวิทยาศาสตร์ประเทศไทย ตำบลคลองหนึ่ง อำเภอคลองหลวง จังหวัดปทุมธานี 12120

ดวงกมล วิบูลย์รัตนศรี

ศูนย์นาโนเทคโนโลยีแห่งชาติ สำนักงานพัฒนาวิทยาศาสตร์และเทคโนโลยีแห่งชาติ อุทยานวิทยาศาสตร์ประเทศไทย ตำบลคลองหนึ่ง อำเภอคลองหลวง จังหวัดปทุมธานี 12120

สุพล มนะเกษตรธาร

ศูนย์นาโนเทคโนโลยีแห่งชาติ สำนักงานพัฒนาวิทยาศาสตร์และเทคโนโลยีแห่งชาติ อุทยานวิทยาศาสตร์ประเทศไทย ตำบลคลองหนึ่ง อำเภอคลองหลวง จังหวัดปทุมธานี 12120

References

[1] Chen, L., Wang, T. and Tong, J., 2011, Application of derivatized magnetic materials to the separation and the preconcentration of pollutants in water samples, TrAC, Trends Anal. Chem. 30: 1095-1108.
[2] Petcharoen, K. and Sirivat, A., 2012, Synthesis and characterization of magnetite nanoparticles via the chemical co-precipitation method, Mater. Sci. Eng. B 177: 421-427.
[3] Lu, A.H., Salabas, E.L. and Schuth, F., 2007, Magnetic nanoparticles: Synthesis, protec-tion, functionalization, and application, Angew. Chem. Int. Ed. Engl. 46: 1222-1244.
[4] Wang, J., Yao, M., Xu, G., Cui, P. and Zhao, J., 2009, Synthesis of monodisperse nanocrystals of high crystallinity magnetite through solvothermal process, Mater. Chem. and Phys. 113: 6-9.
[5] Tu, Y.J., You, C.F., Chang, C.K. and Chen, M.H., 2015, Application of magnetic nano-particles for phosphorus removal/ recovery in aqueous solution, J. Taiwan Inst. Chem. Eng. 46: 148-154.
[6] de Vicente, I., Merino-Martos, A., Cruz-Pizarro, L. and de Vicente, J., 2010, On the use of magnetic nano and microparticles for lake restoration, J. Hazard. Mater. 181: 375-381.
[7] Rajput, S., Pittman Jr., C.U. and Mohan, D., 2016, Magnetic magnetite (Fe3O4) nanoparticle synthesis and applications for lead (Pb(2+)) and chromium (Cr(6+)) removal from water, J. Colloid Interface Sci. 468: 334-346.
[8] Iwahori, K., Watanabe, J.I., Tani, Y., Seyama, H. and Miyata, N., 2014, Removal of heavy metal cations by biogenic magnetite nanoparticles produced in Fe(III)-reducing microbial enrichment cultures, J. Biosci. Bioeng. 117: 333-335.
[9] Padmavathy, K.S., Madhu, G. and Haseena, P.V., 2016, A study on effects of pH, adsorbent dosage, time, initial concentration and adsorption isotherm study for the removal of hexavalent chromium (Cr (VI)) from wastewater by magnetite nanoparticles, Procedia Technology 24: 585-594.
[10] Giannoulis, K.M., Tsogas, G.Z., Giokas, D.L. and Vlessidis, A.G., 2012, Dispersive micro-solid phase extraction of ortho-phosphate ions onto magnetite nanoparticles and determination as its molybdenum blue complex, Talanta 99: 62-68.
[11] Faraji, M., Shariati, S., Yamini, Y. and Adeli, M., 2016, Preconcentration of trace amounts of lead in water samples with cetyltrimethylammonium bromide coated magnetite nanoparticles and its determi-nation by flame atomic absorption spec-trometry, Arab. J. Chem. 9: 1540-1546.
[12] กมลทิพย์ เสรีนนท์ชัย, สุมนมาลย์ จันทร์เอี่ยม, ปิยวรรณ พันสี และดวงใจ นาคปรีชา, 2557, การพัฒนาระบบโฟลอินเจคชั่นที่มีความเร็วในการวิเคราะห์สูงสำหรับตรวจวัดความเค็มและฟอสเฟตในน้ำจืดและน้ำกร่อย, ว.วิทยาศาสตร์และเทคโนโลยี 22: 158-171.
[13] Gimbert, L.J., Haygarth, P.M. and Worsfold, P.J., 2007, Determination of nanomolar concentrations of phosphate in natural waters using flow injection with a long path length liquid waveguide capillary cell and solid-state spectrophotometric detection, Talanta 71: 1624-1628.
[14] Ma, J., Yuan, D., Zhang, M. and Liang, Y., 2009, Reverse flow injection analysis of nanomolar soluble reactive phosphorus in seawater with a long path length liquid waveguide capillary cell and spectropho-tometric detection, Talanta 78: 315-320.
[15] Frank, C., Schroeder, F., Ebinghaus, R. and Ruck, W, 2006, Using sequential injection analysis for fast determination of phosphate in coastal waters, Talanta 70: 513-517.
[16] Kröckel, L., Lehmann, H., Wieduwilt, T. and Schmidt, M.A., 2014, Fluorescence detection for phosphate monitoring using reverse injection analysis, Talanta 125: 107-113.
[17] Yaqoob, M., Nabi, A. and Worsfold, P.J., 2004, Determination of nanomolar concentrations of phosphate in freshwaters using flow injection with luminol chemiluminescence detection, Anal. Chim. Acta 510: 213-218.
[18] Katsaounos, C.Z., Giokas, D.L., Vlessidis, A.G., Paleologos, E.K. and Karayannis, M.I., 2003, The use of surfactant-based separa-tion techniques for monitoring of ortho-phosphate in natural waters and waste-water, Sci. Total Environ. 305: 157-167.
[19] Afkhami, A. and Norooz-Asl, R., 2009, Cloud point extraction for the spectrophotometric determination of phosphorus(V) in water samples, J. Hazard. Mater. 167: 752-755.
[20] Pena-Pereira, F., Cabaleiro, N., de la Calle, I., Costas, M., Gil, S., Lavilla, I. and Bendicho, C., 2011, Directly suspended droplet microextraction in combination with microvolume UV-Vis spectrophoto-metry for determination of phosphate, Talanta 85: 1100-1104.
[21] Zaruba, S., Vishnikin, A.B. and Andruch, V., 2015, Application of solidification of floating organic drop microextraction for inorganic anions: Determination of phosphate in water samples, Microchem. J. 122: 10-15.
[22] Zhang, Y., Pan, S., Shen, H. and Hu, M., 2012, Amino-functionalized nano size composite materials for dispersive solid-phase extraction of phosphate in water samples, Anal. Sci. 28: 887-892.
[23] Ma, J., Yuan, D. and Liang, Y., 2008, Sequential injection analysis of nanomolar soluble reactive phosphorus in seawater with HLB solid phase extraction, Mar. Chem. 111: 151-159.
[24] Liang, Y., Yuan, D., Li, Q, and Lin, Q., 2007, Flow injection analysis of nanomolar level orthophosphate in seawater with solid phase enrichment and colorimetric detection, Mar. Chem. 103: 122-130.
[25] Asaoka, S., Kiso, Y., Oomori, T., Okamura, H., Yamada, T. and Nagai, M., 2014, An online solid phase extraction method for the determination of ultratrace level phosphate in water with a high performance liquid chromatograph, Chem. Geol. 380: 41-47.
[26] Rashid, M., Price, N.T., Pinilla, M.A.G. and O'Shea, K.E., 2017, Effective removal of phosphate from aqueous solution using humic acid coated magnetite nanoparticles, Water Res. 123: 353-360.
[27] Yu, Z., Zhang, C., Zheng, Z., Hu, L., Li, X., Yang, Z., Ma. C. and Zeng, G., 2017, Enhancing phosphate adsorption capacity of SDS-based magnetite by surface modification of citric acid, Appl. Surf. Sci. 403: 413-425.
[28] Wang, Z., Fang. W., Xing, M. and Wu, D., 2017, A bench-scale study on the removal and recovery of phosphate by hydrous zirconia-coated magnetite nanoparticles, J. Magn. Magn. Mater. 424: 213-220.
[29] Jang, J.H. and Lim, H.B., 2010, Charac-terization and analytical application of surface modified magnetic nanoparticles, Microchem. J. 94: 148-158.
[30] American Public Health Association, American Water Works Association, and Water Environment Federation, 1998, Standard Methods for the Examination of Water and Wastewater, 20th Ed., American Public Health Association, Washington, DC, pp.4-146-4-147.
[31] Mahdavi, M., Ahmad, M.B., Haron, M.J., Namvar, F., Nadi, B., Rahman, M.Z.A. and Amin, J., 2013, Synthesis, surface modification and characterisation of biocompatible magnetic iron oxide nanoparticles for biomedical applications. Molecules 18: 7533-7548.
[32] Giakisikli, G. and Anthemidis, A.N., 2013, Magnetic materials as sorbents for metal/metalloid preconcentration and/or separation. A review, Anal. Chim. Acta 789: 1-16.
[33] Li, Y.-S., Church, J.S. and Woodhead, A.L., 2012, Infrared and Raman spectroscopic studies on iron oxide magnetic nano-particles and their surface modifications, J. Magn. Magn. Mater. 324: 1543-1550.