การประยุกต์การรับรู้จากระยะไกลเพื่อศึกษาอิทธิพลของพื้นที่สีเขียวต่อการเปลี่ยนแปลงอุณหภูมิพื้นผิว กรณีศึกษา เทศบาลนครนครสวรรค์

Main Article Content

นราธิป เพ่งพิศ
วรรธนนันท์ ใจสะอาด
ไชยา อู๋ชนะภัย

Abstract

This study aims to apply remote sensing and geographic information system for estimating land surface temperature (LST) and fractional vegetation cover (FVC) from Landsat-8 satellite image in Nakhon Sawan municipality area. LST was obtained by brightness temperature then FVC was estimated based on normalization vegetation difference index (NDVI). Moreover, LST and FVC were analyzed to determine the correlation. These data were used to study the influence of green area which affects the temperature changes. Furthermore, linear regression was created to predict land surface temperature. The result shows that Nakhon Sawan municipality area had an average FVC and LST of 0.4323 or 43.23 percent and 27.25 degree Celsius, respectively. Moreover, land surface temperatures in urban area, which were covered by a lot of building, are higher than that of the forest or agricultural area. Furthermore, these temperatures are also higher than an average of LST. The result also showed r correlation at -0.8610 and (R2) 0.7413 at significance level 0.01 which had explained the influence of green areas. If green areas increase, an average of LST will be decrease in opposite direction. When LST is predicted LST by linear regression that show, if Nakhon Sawan municipality had not green areas, the average of LST would have 30.21 degree Celsius but if green areas of 60 percent, the average of LST would have 26.32 degree Celsius, which have RMSE of equation +-0.38 degree Celsius.

Downloads

Download data is not yet available.

Article Details

Section
วิทยาศาสตร์กายภาพ
Author Biographies

นราธิป เพ่งพิศ, สาขาวิชาภูมิศาสตร์ คณะมนุษยศาสตร์และสังคมศาสตร์ มหาวิทยาลัยราชภัฏนครสวรรค์

สาขาวิชาภูมิศาสตร์ คณะมนุษยศาสตร์และสังคมศาสตร์ มหาวิทยาลัยราชภัฏนครสวรรค์ ตำบลนครสวรรค์ตก อำเภอเมือง จังหวัดนครสวรรค์ 60000

วรรธนนันท์ ใจสะอาด

สาขาวิชาภูมิศาสตร์ คณะมนุษยศาสตร์และสังคมศาสตร์ มหาวิทยาลัยราชภัฏนครสวรรค์ ตำบลนครสวรรค์ตก อำเภอเมือง จังหวัดนครสวรรค์ 60000

ไชยา อู๋ชนะภัย

สาขาวิชาภูมิศาสตร์ คณะมนุษยศาสตร์และสังคมศาสตร์ มหาวิทยาลัยราชภัฏนครสวรรค์ ตำบลนครสวรรค์ตก อำเภอเมือง จังหวัดนครสวรรค์ 60000

References

[1] The Thai Meteorological Department, Urban Heat Island, Available Source: https://www.tmd.go.th, September 24, 2018. (in Thai)
[2] Thai Health Promotion Foundation, The High Temperature is Affecting Stress, Available Source: http://bit.ly/2TV8PMa, September 24, 2018. (in Thai)
[3] Land Development Department, Summary of Land Use in Nakhon Sawan Province, Available Source: http://www1.ldd.go.th/WEB_OLP/Lu_59/Lu59_N/NSN59.htm, September 25, 2018. (in Thai)
[4] Office of Natural Resource and Environment Policy and Planning, The Project of Development Base on Eco-city for Managed Sustainable Urban Environment and Community, Available Source: http://www.onep.go.th/eurban/index.php?option=com_content&view=article&id=203:2018-09-03-06-57-55&catid=42:news-and-activies&Itemid=101, September 25, 2018. (in Thai)
[5] US Environmental Protection Agency, Heat Island Effect, Available Source: https://www.epa.gov/heat-islands, December 15, 2014.
[6] Phengphit, N., Karnchanasutham, S., Nualchawee, K. and Soytong, P., 2017, The study of correlation between land surface temperature with urban and building area, a case study of Amphoe Mueang Rayong, Rayong province, Thailand, Geoinform. Technol. Burapha Univ. J. 2(3): 27-40. (in Thai)
[7] Apakupakul, R., 2004, Introduction to meteorology, Chulalongkorn University, Bangkok, 226 p. (in Thai)
[8] Gutman, G. and Ignatov, A.,1998, The derivation of the green vegetation fraction from NOAA/AVHRR data for use in numerical weather prediction models, Remote Sens. J. 19: 1533-1543.
[9] Zeng, X.B., Dickinson, R.E., Walker, A., Shaikh, M., DeFries, R.S. and Qi, J.G., 2000, Derivation and evaluation of global 1-km fractional vegetation cover data for land modeling, Appl. Meteorol. J. 39: 826-839.
[10] Lu, D. and Weng, Q., 2004, Spectral mixture analysis of the urban landscape in Indianapolis with Landsat ETM+ imagery, Photogram. Eng. Remote Sens. J. 70: 1053-1062.
[11] Glinsopon, P., Iamtrakul, P., Menarin, S. and Siewwuttanagul, S., 2013, Assessing the effects of surface temperatures in different urban climate zones of Bangkok Metropolitan regions (BMR), pp. 495-501, 4th Built Environment Research Associates Conference (BERAC), Thammasat Univer sity, Pathum Thani. (in Thai)
[12] Siewwuttanagul, S. and Iamtrakul, P., 2013, A study of factors contributing on urban heat islands in Bangkok and its vicinities, pp. 530-536, 4th Built Environment Research Associates Conference (BERAC), Thammasat Univer sity, Pathum Thani. (in Thai)
[13] Mitngam, A., Phengphit, N., Rukveratham, S. and Prarom, L., 2017, The application of remote sensing for studying influence of urban heat island phenomenon effected to rainfall, a case study of Rayong province, Geoinform. Technol. Burapha Univ. J. 2(4): 44-54. (in Thai)
[14] USGS, Using the USGS Landsat Level-1 Data Product (Conversion to Top of Atmosphere Brightness Temperature), Available Source: https://landsat.usgs.gov/using-usgs-landsat-8-product, September 15, 2017.
[15] USGS, Using the USGS Landsat Level-1 Data Product (Conversion to TOA Radiance), Available Source: https://land sat.usgs.gov/using-usgs-landsat-8-product, September 15, 2017.
[16] Skokovic, D., Sobrino, J.A., Jimenez-Munoz, J.C., Soria, G., Julien, Y., Mattar, C. and Cristobal, J., 2014, Calibration and Validation of land surface temperature for Landsat8-TIRS sensor, Available Source: https://earth.esa.int/documents/700255/2126408/ESA_Lpve_Sobrino_2014a.pdf, September 15, 2017.
[17] Lawrence, R.L. and Ripple, W.J., 1998, Comparisons among vegetation Indices and bandwise regression in a highly disturbed, heterogeneous landscape, Available Source: http://remotesensing. montana.edu/documents/lawrence_ripple1998.pdf, September 15, 2017.
[18] USGS, 2013, Using the USGS Landsat Level-1 Data Product (Conversion to TOA Reflectance) Available Source: https://landsat.usgs.gov/using-usgs-landsat-8-product, September 15, 2017.
[19] Office of Natural Resource and Environment Policy and Planning, The guidelines of green area and standard ratio, Available Source: http://www.onep.go.th/wp-content/uploads/handbook-green.pdf, September 24, 2018. (in Thai)
[20] The Thai Meteorological Department, The statistic of dry air temperature, Available Source: https://drive.google.com/open?id=0B4hw92cgW_yYZ0RETVptMUEycE5lNkZJdjFUZlQ3RUs3R0xN, September 24, 2018. (in Thai)
[21] Office Of Natural Resources and Environmental Policy and Planning, 2005. The definition of green areas, Available Source: http://www.onep.go.th/eurban/plant/green_area.php, September 24, 2018. (in Thai)
[22] Agnihotri, A.K., Ohri, A. and Mishra, S., 2018, Impact of green spaces on the urban microclimate through Landsat 8 and TIRS data, in Varanasi, India, Int. J. Environ. Sustain. 7(2): 72-80.
[23] Suteethorn, S., Green Roof: Alternative for Managed Rain, Available Source: http://www.onep.go.th/wp-content/uploads/handbook-green.pdf, September 24, 2018. (in Thai)