การเปรียบเทียบประสิทธิภาพของตัวสถิติทดสอบไม่อิงพารามิเตอร์ 3 วิธี สำหรับแผนแบบการทดลอง 23 แฟกทอเรียล

Main Article Content

ศรีวรรณ เมืองลอย
บุญอ้อม โฉมที
จุฑาภรณ์ สินสมบูรณ์ทอง
จันทร์ธา วงษ์อู่ทอง

Abstract

Abstract


The objective of this research is to compare the efficiency of the three nonparametric statistical tests for 23 factorial experimental design: rank sums test, rank transform test and aligned rank transform test. The data in this research is simulated by the Monte Carlo technique and each case is replicated 1,000 times. The data is generated from the linear model of 23 factorial experimental design. In each treatment combination, it is repeated 2, 3, 4, 5 and 6 times. The criteria for comparison are Bradley’s control ability of type I error and power of a test. For the results, it is found that at the significant level 0.05, rank sums test cannot control the probability of type I error in all cases. However, rank transform test and aligned rank transform test can control the probability of type I error in almost every situation. When considering the power of a test, it is found that power of a test of aligned rank transform test is greater or equal to that of rank transform test for all situations. 


Keywords: nonparametric statistic; 23 factorial experimental design; type I error; power of a test

Article Details

Section
Physical Sciences
Author Biographies

ศรีวรรณ เมืองลอย

ภาควิชาสถิติ คณะวิทยาศาสตร์ มหาวิทยาลัยเกษตรศาสตร์ แขวงลาดยาว เขตจตุจักร กรุงเทพมหานคร 10900

บุญอ้อม โฉมที

ภาควิชาสถิติ คณะวิทยาศาสตร์ มหาวิทยาลัยเกษตรศาสตร์ แขวงลาดยาว เขตจตุจักร กรุงเทพมหานคร 10900

จุฑาภรณ์ สินสมบูรณ์ทอง

ภาควิชาสถิติ คณะวิทยาศาสตร์ มหาวิทยาลัยเกษตรศาสตร์ แขวงลาดยาว เขตจตุจักร กรุงเทพมหานคร 10900

จันทร์ธา วงษ์อู่ทอง

ภาควิชาสถิติ คณะวิทยาศาสตร์ มหาวิทยาลัยเกษตรศาสตร์ แขวงลาดยาว เขตจตุจักร กรุงเทพมหานคร 10900

References

[1] ชวนี สุภิรัตน์, 2552, ประสิทธิภาพของสถิติทดสอบสำหรับแผนแบบแฟคทอเรียล กรณีที่มีตัวแปรร่วม, ว.วิทยาศาสตร์ มข. 37: 102-111.
[2] Leys, C. and Schumann, S., 2010, A nonparametric method to analyze interactions: The adjusted rank transform test, J. Exp. Soc. Psychol. 46: 684-688.
[3] พรนภา ด่านไทยวัฒนา, 2556, การเปรียบเทียบกำลังการทดสอบของสถิติทดสอบสำหรับแผนการทดลองแบบ 2 x 2 แฟคทอเรียล, ว.วิทยาศาสตร์ มข. 41: 781-788.
[4] Bradley, J.V., 1978, Robustness?, Br. J. Math. Stat. Psychol. 31: 144-152.
[5] Dunn, O.J., 1964, Multiple comparisons using rank sums, Technometrics 6: 241-252.
[6] Kao, E.P.C., 1969, A non-parametric approach to the 23 factorial design, Technometrics 11: 193- 196.
[7] Akritas, M.G., Arnold, S.F. and Brunner, E., 1997, Nonparametric hypotheses and rank statistics for unbalanced factorial designs, J. Am. Stat. Assoc. 92: 258-265.
[8] Wobbrock, J.O., Findlater, L., Gergle, D., Higgins, J.J., 2011, The aligned rank transform for nonparametric factorial analyses using only ANOVA procedures, pp. 143-146, 29th Annual CHI Conference on Human Factors in Computing Systems (CHI 2011), Vancouver.
[9] Montgomery, D.C., 1976, Design and Analysis of Experiments, John Wiley & Sons, Inc., ‎Hoboken, New Jersey, 418 p.