การสังเคราะห์อนุภาคนาโนเหล็กเชิงประกอบสารสกัดเปลือกมังคุดโดยวิธีสะอาดเพื่อใช้ในการกำจัดสีย้อมเมทิลีนบลูในสารละลายน้ำ

Main Article Content

พิชญ์สินี สมชัยดี
การะเกด เทศศรี

Abstract

Abstract


Zero-valent iron nanoparticles were successfully synthesized at room temperature using mangosteen peel extract as both reducing agent and stabilizer. The optimum conditions for mangosteen peel extraction were studied and found that the most effective solvent for the extraction of phenolic compound and flavonoid from the mangosteen peel was 80 % ethanol. Mangosteen peel extract / zero-valent Iron nanocomposites were green synthesized in the presence of Fe3+ precursor and the crude extract in an aqueous medium at room temperature for 12 h. The formation of metallic nanoparticles was monitored by UV-Visible spectroscopy. Transmission electron microscopy images demonstrated that the obtained nanoparticles are high particle dispersion with an average particle sizes of 12 nm. Infrared spectroscopy reveals that there is an interaction between the functional group of the extract and iron atom on the surface of particles. The synthesized mangosteen peel extract / Fe0 nanocomposites have high adsorption and reduction ability, including attributed as an effective catalyst for removing methylene blue in aqueous solution. 


Keywords: zero-valent iron nanoparticle; mangosteen peel extract; green synthesis; methylene blue dye

Downloads

Download data is not yet available.

Article Details

Section
วิทยาศาสตร์กายภาพ
Author Biographies

พิชญ์สินี สมชัยดี

ห้องปฏิบัติการตัวเร่งปฏิกิริยานาโน ภาควิชาเคมี คณะวิทยาศาสตร์ มหาวิทยาลัยบูรพา ตำบลแสนสุข อำเภอเมือง จังหวัดชลบุรี 20131

การะเกด เทศศรี

ห้องปฏิบัติการตัวเร่งปฏิกิริยานาโน ภาควิชาเคมี คณะวิทยาศาสตร์ มหาวิทยาลัยบูรพา ตำบลแสนสุข อำเภอเมือง จังหวัดชลบุรี 20131

References

[1] Khin, M.M., Nair, A.S., Babu, V.J., Murugan R. and Ramakrishna, S., 2012, A review on nanomaterials for environmental remedia tion, Energy Environ. Sci. 5: 8075-8109.
[2] Naghdi, M., Taheran, M., Brar, S.K., Verma, M., Surampalli, R.Y. and Valero J.R., 2015, Green and energy-efficient methods for the production of metalic nanparticles, Beilstein J. Nanotechnol. 6: 2354-2376.
[3] Zhao, X., Liu, W., Cai, Z., Han, B., Qian, T., and Zhao, D., 2016, An overview of preparation and applications of stabilized zero-valent iron nanoparticles for soil and groundwater remediation, Water Res. 100: 245-266.
[4] Xiao-qin, L., Elliott, D.W. and Wei-xian, Z., 2006, Zero-valent iron nanoparticles for abatement of environmental pollutants: Materials and engineering aspects, Crit. Rev. Solid State Mater. 31: 111-122.
[5] Rafatullah, M., Sulaiman, O., Hashim, R. and Ahmad, A., 2010, Adsorption of methylene blue on low-cost adsorbents: A review, J. Hazard Mater. 177: 70-80.
[6] Dutta, K., Mukhopadhyay, S., Bhattacharjee, S. and Chaudhuri, B., 2001, Chemical oxidation of methylene blue using a Fenton-like reaction, J. Hazard Mater. 84: 57-71.
[7] Shahwan, T., Sirriah, S.A. Nairat, M., Boyaci, E., Eroglu, A.E., Scott, T.B. and Hallam, K.R., 2011, Green synthesis of Iron nanoparticles and their application as a Fenton-like catalyst for the degradation of aqueous cationic and anionic dyes, Chem. Eng. J. 172: 258-266.
[8] Lien, H.L., Elliott, D.W., Sun, Y.P. and Zhang, W.X., 2006, Recent progress in zero-valent iron nanoparticles for groundwater remediation, Environ. Eng. Manag. J. 16: 371-380.
[9] Duan, H., Wang, D. and Li, Y., 2015, Green chemistry for nanoparticle synthesis, Chem. Soc. Rev. 44: 5778-5792.
[10] Srikar, S.K., Giri, D.D., Pal, D.B., Mishra, P.K. and Upadhyay, S.N., 2016, Green synthesis of silver nanoparticles: A review, Green Sustain. Chem. 6: 34-56.
[11] Sett, A., Gadewar, M., Sharma, P., Deka, M. and Bora, U., 2016, Green synthesis of gold nanoparticles using aqueous extract of Dillenia indica, Adv. Nat. Sci. Nanosci. Nanotech. 7: 1-8
[12] Herlekar, M., Barve, S. and Kumar, R., 2014, Plant-mediated green synthesis of iron nanoparticles, J. Nanopart. 2014: 1-9.
[13] Pattanayak, M. and Nayak, P.L., 2013, Ecofriendly green synthesis of iron nanoparticles and spiced extract, Int. J. Pl. An. Env. Sci. 3: 68-78.
[14] Rosicka, D. and Sembera, J., 2011, Influence of structure of iron nanoparticles in aggregates on their magnetic properties, Nanoscale Res. Lett. 6: 527.
[15] Dhuper, S., Panda, D. and Nayak, P.L., 2012, Green synthesis and characteriza tion of zero valent iron nanoparticles from the leaf extract of Mangifera indica, Nano Trends J. Nanotechnol. Appl. 13: 16-22.
[16] Karthikeyan, C., Ranjani, M., Kim, A.R., Yoo, D.J. and Kumar, G.G., 2016, Synthesis of iron nanoparticles using Azadirachta indica extract and its catalytic activity toward nitrophenol reduction, J. Nanosci. Nanotechnol. 16: 2527-2533.
[17] Shah, S., Dasgupta, S., Chakraborty, M., Vadakkekara, R. and Hajoori, M., 2014, Green synthesis of iron nanoparticles using plant extracts, Int. J. Biol. Pharm. Res. 5: 549-552.
[18] Kuppusamy, P., Yusoff, M.M., Maniam, G.P. and Govindan, N., 2016, Biosynthesis of metallic nanoparticles using plant derivatives and their new avenues in pharmacological applications: An updated report, Saudi. Pharm. J. 24: 473-484.
[19] Chong, Y.M., Chang, S.K., Sia, W.C.M. and Yim, H.P., 2015, Antioxidant efficacy of mangosteen (Garcinia mangostana Linn.) peel extracts in sunflower oil during accelerated storage, Food Biosci. 12: 18-25.
[20] Lee, K.X., Shameli, K., Miyake, M., Kuwano, N., Khairudin, N.B.A. and Mohamad, S.E., 2016, Green synthesis of gold nanoparticles using aqueous extract of Garcinia mangostana fruit peels, J. Nanomater. 2016: 1-7.
[21] Nastasia, P., Babeş, A. and Bunea, C., 2007, The UV-Vis spectral fingerprints of polyphenols from several red grape varieties, Buletinul USAMV-CN 64: 1454-238.
[22] Doak, J., Gupta, R.K., Manivannan, K., Ghosh, K. and Kahol, P.K., 2010, Effect of particle size distributions on absorbance spectra of gold nanoparticles, Physica E 42: 1605-1609.
[23] He, F. and Zhao, D., 2005, Preparation and characterization of a new class of starch-stabilized bimetallic nanoparticles for degradation of chlorinated hydrocarbons in water, Environ. Sci. Technol. 39: 3314-3320.
[24] Iravani, S. and Zolfaghari, B., 2013, Green synthesis of silver nanoparticles using Pinus eldarica bark extract, BioMed Res. Int. 2013: 1-5.
[25] Suttirak, W. and Manurakchinakorn, S., 2014, In vitro antioxidant properties of mangosteen peel extract, Food Sci. Technol. Int. 51: 3546-3558.
[26] Shan, T., Ma, Q., Guo, K., Liu, J., Li, W., Wang, F. and Wu, E., 2011, Xanthones from mangosteen extracts as natural chemopreventive agents: Potential anticancer drugs, Curr. Mol. Med. 11: 666-677.
[27] Lin, J., Weng, X., Jin, X., Megharaj, M., Naidu, R. and Chen, Z., 2015, Reactivity of iron-based nanoparticles by green synthesis under various atmospheres and their removal mechanism of methylene blue, RSC Adv. 5: 70874-70882.