Simulation of Biogas Power Generation by Integrated Process of Tri-reforming and Fuel Cells

Main Article Content

ครองขวัญ พูลบุญ
ศตวรรษ ฉิมวัย
วรณี มังคละศิริ
จิตติ มังคละศิริ

Abstract

In this work, an integrated system of biogas tri-reforming and fuel cells (MCFC and SOFC) were studied by using Aspen Plus v.9.0. Biogas obtained from sewage of sugar industry contained 75 % CH4 and 25 % CO2. The effect of several parameters including tri-reforming temperature (200-1,200 ºC), steam/carbon (S/C) molar ratio (0.1-3.0), oxygen/carbon (O2/C) molar ratio (0.1-1.0), MCFC temperature (600-750 ºC), and SOFC temperature (800-1,000 ºC) on power generation were investigated. The simulation results showed that the optimal operating conditions provided the highest hydrogen production from tri-reforming were tri-reforming temperature of 700 ºC, S/C molar ratio of 3.0, and O2/C molar ratio of 0.1. Under these conditions of tri-reforming, the optimal operating conditions of MCFC and SOFC provided maximum power generation were temperature of 750 ºC for MCFC and temperature of 1,000 ºC for SOFC under atmospheric pressure. Moreover, the comparison of system performance in term of power density was evaluated. The results showed that power density of SOFC was 5807.33 W/m2, which was higher value than that of MCFC system (3085.14 W/m2).

Downloads

Download data is not yet available.

Article Details

Section
วิศวกรรมศาสตร์และสถาปัตยกรรมศาสตร์
Author Biographies

ครองขวัญ พูลบุญ

ภาควิชาวิศวกรรมเคมี คณะวิศวกรรมศาสตร์ มหาวิทยาลัยธรรมศาสตร์ ศูนย์รังสิต ตำบลคลองหนึ่ง อำเภอคลองหลวง จังหวัดปทุมธานี 12120

ศตวรรษ ฉิมวัย

ภาควิชาวิศวกรรมเคมี คณะวิศวกรรมศาสตร์ มหาวิทยาลัยธรรมศาสตร์ ศูนย์รังสิต ตำบลคลองหนึ่ง อำเภอคลองหลวง จังหวัดปทุมธานี 12120

วรณี มังคละศิริ

ภาควิชาวิศวกรรมเคมี คณะวิศวกรรมศาสตร์ มหาวิทยาลัยธรรมศาสตร์ ศูนย์รังสิต ตำบลคลองหนึ่ง อำเภอคลองหลวง จังหวัดปทุมธานี 12120

จิตติ มังคละศิริ

ศูนย์เทคโนโลยีโลหะและวัสดุแห่งชาติ อุทยานวิทยาศาสตร์แห่งประเทศไทย ตำบลคลองหนึ่ง อำเภอคลองหลวง จังหวัดปทุมธานี 12120

References

[1] The Secretariat of the House of Representatives, 2016, Hydrogen Fuel: Alternative Energy Resource to Reduce Global Warming, Available Source: https://library2.parliament.go.th/ejournal/content_af/2559/jun2559-6.pdf, November 13, 2018. (in Thai)
[2] Energy Policy and Planning Office Ministry of Energy, 2015, Hydrogen fuel: New Energy Source Used Instead of Crude Oil, Available Source: http://erdi.cmu.ac.th/index.php/news/1254?category=11, November 16, 2018. (in Thai)
[3] Wiboonsaliltara, S., 2014, Equilibrium Model of Hydrogen Production from Hydrocarbon and Alcohol, Chulalongkorn University, Bangkok, 24 p. (in Thai)
[4] Lekapat, S. and Teekasap, S., 2013, Fuel cell: Alternative energy resource in the future, EAU Heritage J. Sci. Tech. 7: 1-10. (in Thai)
[5] Arpornwichanop, A., 2011, Fuel cell, Available Source: http://www.chulapedia.chula.ac.th/index.php, November 20, 2018. (in Thai)
[6] Department of Alternative Energy Development and Efficiency, 2018, Map of Biogas Status for Production and Usage in Thailand, Available Source: http://webkc.dede.go.th/testmax/node/671, November 24, 2018. (in Thai)
[7] Manenti, F., Pelosato, R., Vallevi, P., Leon-Garzon, A.R., Dotelli, G., Vita, A., Faro, M.L., Maggio, G., Pino, L. and Aricò, A.S., 2015, Biogas-fed solid oxide fuel cell (SOFC) coupled to tri-reforming process: Modelling and simulation, Int. J. Hydrog. Energy 40: 14640-14650.
[8] Santoni, F., Della Pietra, M., Pumiglia, D., Boigues Muñoz, C., McPhail, S.J., Cigolotti, V., Nam, S.W., Kang, M.G. and Yoon, S.P., 2018, Accurate in-operando study of molten carbonate fuel cell degradation processes-part I: physiochemical processes individuation, Electrochim. Acta 291: 343-352.
[9] Yang, F., Zhu, X.J. and Cao, G.Y., 2007, Temperature control of MCFC based on an affine nonlinear thermal model, J. Power Sources 164: 713-720.
[10] Nguyen, H.V.P., Othman, M.R., Seo, D., Yoon, S.P., Ham, H.C., Nam, S.W., Han, J. and Kim, J., 2014, Nano Ni layered anode for enhanced MCFC performance at reduced operating temperature, Int. J. Hydrog. Energy 39: 12285-12290.
[11] Duan, L., Xia, K., Feng, T., Jia, S. and Bian, J., 2016, Study on coal-fired power plant with CO2 capture by integrating molten carbonate fuel cell system, Energy 117: 578-589.
[12] Baron, R., Wejrzanowski, T., Szabłowski, Ł., Szczesniak, A., Milewski, J. and Fung, K.Z., 2018, Dual ionic conductive membrane for molten carbonate fuel cell, Int. J. Hydrog. Energy 43: 8100-8104.
[13] Chatrattanawet, N., Saebea, D., Authayanun, S., Arpornwichanop, A. and Patcharavorachot, Y., 2018, Performance and environmental study of a biogas-fuelled solid oxide fuel cell with different reforming approaches, Energy 146: 131-140.
[14] Pilatowsky, I., Romero, R.J., Isaza, C.A., Gamboa, S.A., Sebastian, P.J. and Rivera, W., 2011, Cogeneration Fuel Cell-Sorption Air Conditioning Systems, Springer London Dordrecht Heidelberg, New York, 35 p.
[15] Duan, L., Zhu, J., Yue, L., and Yang, Y., 2014, Study on a gas-steam combined cycle system with CO2 capture by integrating molten carbonate fuel cell, Energy 74: 417-427.
[16] Choedkiatsakul, I., Sintawarayan, K., Prawpipat, T., Soottitantawat, A., Wiyaratn, W., Kiatkittipong, W., Arpornwichanop, A., Laosiripojana, N., Charojrochkul, S. and Assabumrungrat, S., 2010, Performance assessment of SOFC systems integrated with bio-ethanol production and purification processes, Engineer J. 14: 1-14.
[17] Campanari, S., Chiesa, P. and Manzolini, G., 2010, CO2 capture from combined cycles integrated with molten carbonate fuel cells, Int. J. Greenh. Gas Con. 4: 441-451.
[18] Nahar, G., Mote, D. and Dupont, V., 2017, Hydrogen production from reforming of biogas: Review of technological advances and an Indian perspective, Renew. Sust. Energy Rev. 76: 1032-1052.
[19] Phetkaewphet, S. and Sookkumnerd, C., 2015, Parametric study of process variables in biogas production at Mitr Phol (Phu vieng), 21 p., 2nd National Conference on Farm Engineering and Automation Technology. (in Thai)
[20] Yu, K. and Chein, R., 2017, Numerical modeling on catalytic tri-reforming reaction of methane for syngas production, Energy Procedia 105: 4198-4203.
[21] Zhang, Y., Cruz, J., Zhang, S., Lou, H.H., and Benson, T.J., 2013, Process simulation and optimization of methanol production coupled to tri-reforming process, Int. J. Hydrog. Energy 38: 13617-13630.
[22] Khajeh, S., Aboosadi, Z.A. and Honarvar, B., 2014, A comparative study between operability of fluidized-bed and fixed-bed reactors to produce synthesis gas through tri-reforming, J. Nat. Gas Sci. Eng. 19: 152-160.
[23] Zhang, Y., Zhang, S., Gossage, J.L., Lou, H.H. and Benson, T.J., 2014, Thermo dynamic analyses of tri-reforming reaction to produce syngas, Energy Fuels 28: 2717-2726.
[24] Yoo, J., Bang, Y., Han, S.J., Park, S., Song, J.H. and Song, I.K., 2015, Hydrogen production by tri-reforming of methane over nickel–alumina aerogel catalyst, J. Mol. Catal. A Chem. 410: 74-80.
[25] Damanabi, A.T. and Bahadori, F., 2017, Improving GTL process by CO2 utilization in tri-reforming reactor and application of membranes in Fisher Tropsch reactor, J. CO2 Util. 21: 227-237.
[26] Wu, K.T., Yu, C.T. and Chein, R.Y., 2017, Numerical modeling on catalytic tri-reforming reaction of methane for syngas production, Energy Procedia 105: 4198-4203.