การพยากรณ์จำนวนผู้ป่วยโรคเฝ้าระวังในประเทศไทย

Main Article Content

วรางคณา เรียนสุทธิ์

Abstract

The purpose of this research was to construct the most suitable forecasting model for the number of patients with disease surveillance in Thailand. The data gathered from the website of Social and Quality of Life Database System during the first quarter, 2003 to the fourth quarter, 2017 (60 values) were used and divided into two categories. The first category had 56 values, which were the data during the first quarter, 2003 to the fourth quarter, 2016 for the modeling by the methods of Box-Jenkins, Winters’ exponential smoothing, and decomposition. The second category had 4 values, which were the data during the first quarter to the fourth quarter, 2017 for checking the accuracy of the forecasting models via the criterion of the lowest mean absolute percentage error. The results showed that among all forecasting methods that had been studied, Winters’ multiplicative exponential smoothing method was the most suitable for this time series.

Downloads

Download data is not yet available.

Article Details

Section
วิทยาศาสตร์กายภาพ
Author Biography

วรางคณา เรียนสุทธิ์

สาขาวิชาคณิตศาสตร์และสถิติ คณะวิทยาศาสตร์ มหาวิทยาลัยทักษิณ วิทยาเขตพัทลุง ตำบลบ้านพร้าว อำเภอป่าพะยอม จังหวัดพัทลุง 93210

References

[1] Department of Disease Control, 2016, Summary of 5-Dimensional 5-Year Surveillance System Analysis Guidelines for the Year 2016: Risk Analysis of Public Unusual Events, Ministry of Public Health, Nonthaburi. (in Thai)
[2] Social and Quality of Life Database System, Number of Patients with Disease Surveillance, 2003-2017, quarterly, Available Source: https://social.nesdb.go.th/SocialStat/StatReport_Final.aspx?reportid=303&template=1R2C&yeartype=M&subcatid=17, May 5, 2018. (in Thai)
[3] Iamsirithaworn, S., Epidemiological Surveil lance Principles, Available Source: https://www.boe.moph.go.th/files/meeting/sopon.pdf, May 10, 2018. (in Thai)
[4] Taesombut, S., 2006, Quantitative Forecasting, Physics Center, Bangkok, 487 p. (in Thai)
[5] Bowerman, B.L. and O’Connell, R.T., 2000, Forecasting and Time Series: An Applied Approach, 3rd Ed., Duxbury Press, California, 726 p.
[6] Box, G.E.P., Jenkins, G.M. and Reinsel, G.C., Ljung, G.M., 2015, Time Series Analysis: Forecasting and Control, 5th Ed., Prentice Hall, New Jersey, 712 p.
[7] Riansut, W., 2016, Forecasting the number of unemployment in Thailand, Naresuan Univ. J. Sci. Technol. 24(1): 102-114. (in Thai)
[8] Ket-iam, S., 2003, Forecasting Technique, Thaksin University, Songkhla, 295 p. (in Thai)
[9] Makridakis, S.G., Wheelwright, S.C. and Hyndman, R.J., 1998, Forecasting: Methods and Applications, 3rd Ed., John Wiley & Sons, New York, 642 p.
[10] Riansut, W., 2018, Forecasting the export values of natural gas through Customs department in Southern Thailand, Thai Sci. Technol. J. 26(8): 1273-1285. (in Thai)
[11] Mongkolsamrit, S., Introduction to Epidemiology, Available Source: https://cwweb2.tu.ac.th/emc/ShelfTU/@tubookshelf2/PB321/PB321.pdf, May 15, 2018. (in Thai)