การผลิตก๊าซไบโอไฮเทนจากชานอ้อยโดยกระบวนการหมัก 2 ขั้นตอน ที่สภาวะเทอร์โมฟิลิก

Main Article Content

วัฒนณรงค์ มากพันธ์
สมพงศ์ โอทอง

Abstract

Biohythane production from sugarcane bagasse by two-stage thermophilic fermentation process consisting of hydrogen production as first stage and methane production as second stage was investigated. Maximum hydrogen and methane productions from two-stage thermophilic fermentation process obtaining at 15 % w/v sugarcane bagasse were 4.87 L H2/L-waste and 28.54 L CH4/L-waste, respectively. Whereas, single stage gave maximum methane production of 10.35 L CH4/L-waste at 20 % w/v sugarcane bagasse. Pretreatment of solid fraction after hydrogen production by 1 % (v/v) H2SO4, steam explosion and microwave with subsequent methane production by two-stage thermophilic fermentation process improved methane production in second stage of 30, 160 and 200 % comparing with that of without pretreatment. Pretreatment of solid fraction after hydrogen production by 5 % NaOH for 24 hours gave maximum methane production of 7.28 L CH4/L-waste at 10% w/v sugarcane bagasse. Pretreatment of solid fraction after hydrogen production by 1 % (v/v) H2SO4 for 24 hours gave maximum methane production of 17.10 L CH4/L-waste at 15 % w/v sugarcane bagasse. Pretreatment of solid fraction after hydrogen production by steam explosion at 121 °C for 1 hour gave maximum methane production of 35.75 L CH4/L-waste at 15 % w/v sugarcane bagasse. Pretreatment of solid fraction after hydrogen production by 700-watt microwave for 3 min gave maximum methane production of 39.28 L CH4/L-waste at 30 % w/v sugarcane bagasse. Hydrogen and methane productions from sugarcane bagasse at 15 % by two-stage thermophilic fermentation process gave 33.41 L of mixed biogas that was a suitable composition (H2 = 6.0 %, CO2 = 35 % and CH4 = 58.9 %) as biohythane fuels with total energy of 1,384 KJ/L.

Article Details

Section
Biological Sciences
Author Biographies

วัฒนณรงค์ มากพันธ์

หลักสูตรวิทยาศาสตร์สิ่งแวดล้อม คณะวิทยาศาสตร์และเทคโนโลยี มหาวิทยาลัยราชภัฏนครศรีธรรมราช ตำบลท่างิ้ว อำเภอเมือง จังหวัดนครศรีธรรมราช 80280

สมพงศ์ โอทอง

สาขาวิชาชีววิทยา คณะวิทยาศาสตร์ มหาวิทยาลัยทักษิณ วิทยาเขตพัทลุง ตำบลบ้านพร้าว อำเภอป่าพะยอม จังหวัดพัทลุง 93110

References

[1] Department of Alternative Energy Development and Efficiency, 2012, Annual Report 2012 (2008-2022), Ministry of Energy, Bangkok, 11 p. (in Thai)
[2] Kaparaju, P., Serrano, M., Thomsen, B.A., Kongjan, P., Angelidaki, I., 2009, Bioethanol, biohydrogen and biogas production from wheat straw in a biorefinery concept, Bioresour. Technol. 100: 2562-2568. (in Thai)
[3] Department of Mineral Fuels, 2011, Annual Report 2011, Ministry of Energy, Bangkok, 174 p. (in Thai)
[4] Jitpupakdee, J., 2009, Two-Phase Biogas Production from Pineapple Pulp and Peel, Master’s Thesis, King Mongkut’s University of Technology North Bangkok, Bangkok, 147 p. (in Thai)
[5] O-Thong, S., Prasertsan, P., Intrasungkha, N., Dhamwichukorn, S. and Birkeland, N.K., 2007, Improvement of biohydrogen production and treatment efficiency on palm oil mill effluent with nutrient supplementation at thermophilic condition using an anaerobic sequencing batch reactor, Enzyme Microb. Technol. 41: 583-590.
[6] Pattra, S., Sangyoka, S., Boonmee, M. and Reungsang, A., 2008, Bio-hydrogen production from the fermentation of sugarcane bagasse hydrolysate by Clostridium butyricum, Int. J. Hydrogen Energy 33: 5256-5265.
[7] Lee, Z., Li, S., Kuo, P., Chen, I., Tein, Y., Huang, Y., Chuang, C., Wong, S. and Cheng, S., 2010, Thermophilic bio-energy process study on hydrogen fermentation with vegetable kitchen waste, Int. J. Hydrogen Energy 35: 13458-13466.
[8] Tawfik, A., Salem, A. and El-Qelish, M., 2010, Two stage anaerobic baffled reactors for bio-hydrogen production from municipal food waste, Bioresour. Technol. 102: 8723-8726.
[9] Fangkum, A. and Reungsang, A., 2011, Biohydrogen production from sugarcane bagasse hydrolysate by elephant dung: Effects of initial pH and substrate concentration, Int. J. Hydrogen Energy 36: 8687-8696.
[10] Plangklang, P., Reungsang, A. and Pattra, S., 2012, Enhance bio-hydrogen production from sugarcane juice by immobilized Clostridium butyricum on sugarcane bagasse, Int. J. Hydrogen Energy 37: 15525-15532.
[11] Cheong, D.Y. and Hansen, C.L., 2007, Feasibility of hydrogen production in thermophilic mixed fermentation by natural anaerobes, Bioresour. Technol. 98: 2229-2239.
[12] Cavinato, C., Giuliano, A., Bolzonella, D., Pavan, P. and Cecchi, F., 2012, Bio-hythane production from food waste by dark fermentation coupled with anaerobic digestion process: A long-term pilot scale experience, Int. J. Hydrogen Energy 37: 11549-11555.
[13] Kongjan, P., O-Thong, S. and Angelidaki, I., 2011, Performance and microbial community analysis of two-stage process with extreme thermophilic hydrogen and thermophilic methane production from hydrolysate in UASB reactors, Bioresour. Technol. 102: 4028-4035.
[14] Office of the Cane and Sugar Board, 2556, Report of Sugar Zone 2012/13, Office of the Cane and Sugar Board, Bangkok. (in Thai)
[15] Rabelo, S.C., Fonseca, N.A., Andrade, R.R., Filho, R.M. and Costa, A.C., 2009, Ethanol production from enzymatic hydrolysis of sugarcane bagasse pretreated with lime and alkaline hydrogen peroxide, Biomass Bioenergy 35: 2600-2607.
[16] Zhao, X., Zhou, Y. and Liu, D., 2012, Kinetic model for glycan hydrolysis and formation of monosaccharides during dilute acid hydrolysis of sugarcane bagasse, Bioresour. Technol. 105: 160-168.
[17] Asgher, M., Ahmad, Z. and Iqbal, H.M.N., 2013, Alkali and enzymatic delignification of sugarcane bagasse to expose cellulose polymers for saccharification and bio-ethanol production, Ind. Crops Prod. 44: 488-495.
[18] Binod, P., Satyanagalakshmi, K., Sindhu, R., Janu, U.K., Sukumaran, K.R. and Pandey, A., 2012, Short duration microwave assisted pretreatment enhances the enzymatic saccharification and fermentable sugar yield from sugarcane bagasse, Renew. Energy 37: 109-116.
[19] Dobois, M., Gilles, K.A., Hamilton, J.K., Rebers, P.A. and Smith, F., 1956, Colorimetric method for determination of sugar and related substances, Anal. Chem. 28: 350-356.
[20] APHA, AWWA and WEF, 1998, Standard Methods for Examination of Water and Wastewater, 20th Ed., American Public Health Association, Washington D.C.
[21] Song, Z.X., Wang, Z.Y., Wu, L.Y., Fan, Y.T. and Hou, H.W., 2012, Effect of microwave irradiation pretreatment of cow dung compost on bio-hydrogen process from corn stalk by dark fermentation, Int. J. Hydrogen Energy 37: 6554-6561.
[22] O-Thong, S., Prasertsan, P., Karakashev, D. and Angelidaki, I., 2008, Thermophilic fermentative hydrogen production by the newly isolated Thermoanaerobacterium thermosaccharolyticum PSU-2, Int. J. Hydrogen Energy 33: 1204-1214.
[23] Chen, W.M., Tseng, Z.J., Lee, K.S. and Chang, J.S., 2005, Fermentation hydrogen production with Clostriduim butyricum CGS5 isolate from anerobic sewage sludg, Int. J. Hydrogen Energy 30: 1063-1070.
[24] Thungklin, P., Reungsang, A. and Sittijunda, S., 2011, Hydrogen production from sludge of poultry slaughterhouse wastewater treatment plant pretreated with microwave, Int. J. Hydrogen Energy 36: 8751-8757.
[25] Kapdan, I. and Karpi, F., 2006, Bio-hydrogen production from waste materials, Enzyme Microb. Technol. 38: 569-582.
[26] Ruggeri, B., Tommasi, T. and Sassi, G., 2009, Experimental kinetics and dynamics of hydrogen production on glucose by hydrogen forming bacteria (HFB) culture, Int. J. Hydrogen Energy 34: 753-763.
[27] Sun, Y. and Cheng, J.J., 2002, Hydrolysis of lignocellulosic materials for ethanol production, Bioresour. Technol. 83: 1-11.
[28] Mosier, N., Wyman, C., Dale, B., Elander, R., Lee, Y.Y., Holtzapple, M. and Ladisch, M., 2005, Features of promising technologies for pretreatment of lignocellulosic biomass, Bioresour. Technol. 96: 673-686.
[29] Chu, C., Xu, K., Li, Y. and Inamori, Y., 2012, Hydrogen and methane potential based on the nature of food waste materials in a two-stage thermophilic fermentation process, Int. J. Hydrogen Energy 37: 10611-10618.
[30] Tahti, H., Kaparaju, P. and Rintala, J., 2013, Hydrogen and methane production in extreme thermophilic conditions in two-stage (upflow anaerobic sludge bed) UASB reactor system, Int. J. Hydrogen Energy 38: 4997-5002.