ชมพู่ทับทิมจันทร์เพิ่มกระบวนการส่งสัญญาณของอินซูลินในตับของหนูเบาหวาน

Main Article Content

ชนัญชิดา สีดาดี
วันทณี หาญช้าง
ทัตดาว ภาษีผล

บทคัดย่อ

การศึกษานี้มีวัตถุประสงค์เพื่อศึกษาผลของชมพู่ทับทิมจันทร์ [Syzygium samarangense (Blume) Merrill. & L.M. Perry var. Samarangense] ต่อกระบวนการส่งสัญญานของอินซูลินภายในตับของหนูเบาหวานเพศผู้ โดยหนี่ยวนำหนูขาวให้เป็นเบาหวานด้วยการฉีดสเตรปโทโซโทซิน (65 มิลลิกรัม/กิโลกรัม น้ำหนักตัว) เข้าทางช่องท้องแบบครั้งเดียว แล้วหนูเบาหวานจะได้รับการป้อนด้วยชมพู่ทับทิมจันทร์ ขนาด 100 มิลลิกรัม/กิโลกรัม น้ำหนักตัว/วัน เป็นเวลา 4 สัปดาห์ หลังจากนั้นศึกษาระดับน้ำตาลในเลือด การเกิด lipid peroxidation และการแสดงออกของโปรตีนที่เกี่ยวข้องกับการส่งสัญญาณของอินซูลินในตับด้วยเทคนิค Western blotting ผลการศึกษาพบว่าหนูเบาหวานมีระดับน้ำตาลในเลือดเพิ่มขึ้นอย่างมีนัยสำคัญทางสถิติเมื่อเปรียบเทียบกับหนูปกติ สอดคล้องกับระดับการแสดงออกของโปรตีน insulin receptor-β (InR-β), phospho-insulin receptor substrate 1 [p-IRS1 (Ser307)] และ phospho-JNK [p-JNK (Thr183/Tyr185)] ที่พบเพิ่มขึ้น ซึ่งบ่งชี้ถึงภาวะดื้อต่ออินซูลินที่ตับ นอกจากนี้ยังพบระดับของ malondialdehyde (MDA) เพิ่มขึ้นในตับของหนูเบาหวานด้วย อย่างไรก็ตามการให้ชมพู่ทับทิมจันทร์ (100 มิลลิกรัม/กิโลกรัม น้ำหนักตัว) แก่หนูเบาหวานพบว่าสามารถลดระดับน้ำตาลในเลือด การแสดงออกของโปรตีน InR- β, p-IRS1 (Ser307) และ p-JNK (Thr183/Tyr185) รวมทั้งระดับของ MDA ในตับของหนูเบาหวานอย่างมีนัยสำคัญทางสถิติ ดังนั้นผลการทดลองในการศึกษานี้จึงมีความเป็นไปได้ว่าชมพู่ทับทิมจันทร์สามารถช่วยเพิ่มกระบวนการส่งต่อสัญญานของอินซูลินภายในตับของหนูเบาหวาน ซึ่งสอดคล้องกับการลดลงของภาวะเครียดออกซิเดชันในเนื้อเยื่อตับของหนูเบาหวาน

Article Details

ประเภทบทความ
Medical Sciences
ประวัติผู้แต่ง

ชนัญชิดา สีดาดี

ภาควิชาสรีรวิทยา คณะวิทยาศาสตร์การแพทย์ มหาวิทยาลัยนเรศวร ตำบลท่าโพธิ์ อำเภอเมือง จังหวัดพิษณุโลก 65000

วันทณี หาญช้าง

ภาควิชาสรีรวิทยา คณะวิทยาศาสตร์การแพทย์ มหาวิทยาลัยนเรศวร ตำบลท่าโพธิ์ อำเภอเมือง จังหวัดพิษณุโลก 65000

ทัตดาว ภาษีผล

ภาควิชาเทคโนโลยีการอาหารและโภชนาการ คณะเทคโนโลยี มหาวิทยาลัยมหาสารคาม ตำบลขามเรียง อำเภอกันทรวิชัย จังหวัดมหาสารคาม 44150

เอกสารอ้างอิง

[1] Karuranga, S., Fernandes, J.d.R., Huang, Y. and Malanda, B. (Eds.), 2017, IDF Diabetes Atlas, 8th Ed., International Diabetes Fede ration, Brussels.
[2] American Diabetes Association, 2009, Diagnosis and classification of diabetes mellitus, Diab. Care 32: 62-67.
[3] Forbes, J.M. and Cooper, M.E., 2013, Mechanisms of diabetic complications, Physiol. Rev. 93: 137-188.
[4] Wilcox, G., 2005, Insulin and insulin resistance, Clin. Biochem. Rev. 26: 19-39.
[5] Postic, C., Dentin, R. and Girard, J., 2004, Role of the liver in the control of carbohydrate and lipid homeostasis, Diab. Metab. 30: 398-408.
[6] Rui, L., 2014, Energy metabolism in the liver, Compr. Physiol. 4: 177-197.
[7] Edgerton, D.S., Kraft, G., Smith, M., Farmer, B., Williams, P.E., Coate, K.C., Printz, R.L., O’Brien, R.M. and Cherrington, A.D., 2017, Insulin’s direct hepatic effect explains the inhibition of glucose production caused by insulin secretion, JCI Insight 2: 91863.
[8] Parveen, K., Khan, M.R., Mujeeb, M. and Siddiqui, W.A., 2010, Protective effects of Pycnogenol® on hyperglycemia-induced oxidative damage in the liver of type 2 diabetic rats, Chem. Biol. Interact. 186: 219-227.
[9] Trauner, M., Arrese, M. and Wagner, M., 2010, Fatty liver and lipotoxicity, Biochim. Biophys. Acta 1801: 299-310.
[10] Meshkani, R. and Adeli, K., 2009, Hepatic insulin resistance, metabolic syndrome and cardiovascular disease, Clin. Biochem.
42: 1331-1346.
[11] Adiels, M., Taskinen, M.R. and Boren, J., 2008, Fatty liver, insulin resistance, and dyslipidemia, Curr. Diab. Rep. 8: 60-64.
[12] King, G.L. and Loeken, M.R., 2004, Hyperglycemia-induced oxidative stress in diabetic complications, Histochem. Cell Biol. 122: 333-338.
[13] Tomas, E., Lin, Y.S., Dagher, Z., Saha, A., Luo, Z., Ido, Y. and Ruderman, N.B., 2002, Hyperglycemia and insulin resistance: Possible mechanisms, Ann. N Y Acad. Sci. 967: 43-51.
[14] Buse, M.G., 2006, Hexosamines, insulin resistance, and the complications of diabetes: current status, Am. J. Physiol. Endocrinol. Metab. 290: 1-8.
[15] McClain, D.A. and Crook, E.D., 1996, Hexosamines and insulin resistance, Diabetes 45: 1003-1009.
[16] Shulman, G.I., 2000, Cellular mechanisms of insulin resistance, J. Clin. Invest. 106: 171-176.
[17] Aguirre, V., Uchida, T., Yenush, L., Davis, R. and Whitei, M.F., 2000, The c-Jun NH2-terminal kinase promotes insulin resistance during association with insulin receptor substrate-1 and phosphorylation of Ser307, J. Biol. Chem. 275: 9047-9054.
[18] Yang, R. and Trevillyan, J.M., 2008, c-Jun N-terminal kinase pathways in diabetes, Int. J. Biochem. Cell Biol. 40: 2702-2706.
[19] Khandaker, M.M. and Boyce, A.N., 2016, Growth, distribution and physiochemical properties of wax apple (Syzygium samarangense): A review, Aust. J. Crop Sci. 10: 1640-1648.
[20] Kuo, Y.C., Yang, L.M. and Lin, L.C., 2004, Isolation and immunomodulatory effect of flavonoids from Syzygium samara gense, Plant. Med. 70: 1237-1239.
[21] Nair, A.G.R., Krishnan, S., Ravikrishna, C. and Madhusudanan, K.P., 1999, New and rare flavonol glycosides from leaves of Syzygium samarangense, Fitoterapia 70: 148-151.
[22] Resurreccion-Magno, M.H., Villasenor, I.M., Harada, N. and Monde, K., 2005, Anti hyperglycaemic flavonoids from Syzygium samarangense (Blume) Merr. and Perry, Phytother. Res. 19: 246-251.
[23] Khandaker, M.M., Boyce, A.N., Osman, N. and Hossain, A.S., 2012, Physiochemical and phytochemical properties of wax apple (Syzygium samarangense [Blume] Merrill & L. M. Perry var. Jambu Madu) as affected by growth regulator application, Sci. World J. 2012: 728613.
[24] Srivastava, R., Shaw, A.K. and Kulshreshtha, D.K., 1995, Triterpenoids and chalcone from Syzygium samarangense, Phyto chemistry 38: 687-689.
[25] Shen, S.C. and Chang, W.C., 2013, Hypotriglyceridemic and hypoglycemic effects of vescalagin from Pink wax apple [Syzygium samarangense (Blume) Merrill and Perry cv. Pink] in high-fructose diet-induced diabetic rats, Food Chem. 136: 858-863.
[26] Shen, S.C., Chang, W.C. and Chang, C.L., 2012, Fraction from Wax Apple [Syzygium samarangense (Blume) Merrill and Perry] Fruit extract ameliorates insulin resistance via modulating insulin signaling and inflammation pathway in tumor necrosis factor α-treated FL83B mouse hepato cytes, Int. J. Mol. Sci. 13: 8562-8577.
[27] Khamchan, A., Paseephol, T. and Hanchang, W., 2018, Protective effect of wax apple [Syzygium samarangense (Blume) Merr. & L.M. Perry] against streptozotocin-induced pancreatic β-cell damage in diabetic rats, Biomed. Pharm. 108: 634-645.
[28] Goyal, S.N., Reddy, N.M., Patil, K.R., Nakhate, K.T., Ojha, S., Patil, C.R. and Agrawal, Y.O., 2016, Challenges and issues with streptozotocin-induced diabetes: A clinically relevant animal model to understand the diabetes pathogenesis and evaluate therapeutics, Chem. Biol. Interact. 244: 49-63.
[29] Lenzen, S., 2008, The mechanisms of alloxan- and streptozotocin-induced diabetes, Diabetologia 51: 216-226.
[30] Boucher, J., Kleinridders, A. and Kahn, C.R., 2014, Insulin receptor signaling in normal and insulin-resistant states, Cold Spring Harb. Perspect. Biol. 6(1): a009191.
[31] Rains, J.L. and Jain, S.K., 2011, Oxidative stress, insulin signaling, and diabetes, Free Rad. Biol. Med. 50: 567-575.
[32] Boucher, J., Kleinridders, A. and Kahn, C.R., 2014, Insulin receptor signaling in normal and insulin-resistant states, Cold Spring Harb Perspect Biol. 6(1): a009191.
[33] Zhou, J., Xu, G., Bai, Z., Li, K., Yan, J., Li, F., Ma, S., Xu, H. and Huang, K., 2015, Selenite exacerbates hepatic insulin resistance in mouse model of type 2 diabetes through oxidative stress-mediated JNK pathway, Toxicol. Appl. Pharm. 289: 409-418.
[34] Al-Attar, A.M. and Alsalmi, F.A., 2017, Effect of Olea europaea leaves extract on streptozotocin induced diabetes in male albino rats, Saudi. J. Biol. Sci. 26: 118-128.
[35] Jayachandran, M., Zhang, T., Ganesan, K., Xu, B. and Chung, S.S.M., 2018, Isoquercetin ameliorates hyperglycemia and regulates key enzymes of glucose metabolism via insulin signaling pathway in streptozotocin-induced diabetic rats, Eur. J. Pharm. 829: 112-120.
[36] Vinayagam, R., Jayachandran, M., Chung, S.S.M. and Xu, B., 2018, Guava leaf inhibits hepatic gluconeogenesis and increases glycogen synthesis via AMPK/ACC signaling pathways in streptozotocin-induced diabetic rats, Biomed Pharm. 103: 1012-1017.
[37] Wei, Y., Gao, J., Qin, L., Xu, Y., Wang, D., Shi, H., Xu, T. and Liu, T., 2017, Tanshinone I alleviates insulin resistance in type 2 diabetes mellitus rats through IRS-1 pathway, Biomed Pharm. 93: 352-358.
[38] Kadowaki, T., Kasuga, M., Akanuma, Y., Ezaki, O. and Takaku, F., 1984, Decreased autophosphorylation of the insulin receptor-kinase in streptozotocin-diabetic rats, J. Biol. Chem. 259: 14208-14216.
[39] Tozzo, E. and Desbuquois, B., 1992, Effects of STZ-induced diabetes and fasting on insulin receptor mRNA expression and insulin receptor gene transcription in rat liver, Diabetes 41: 1609.
[40] Vinayagam, R. and Xu, B., 2015, Antidiabetic properties of dietary flavonoids: A cellular mechanism review, Nutr. Metab. (Lond). 12: 60.
[41] Yang, L., Wang, Z., Jiang, L., Sun, W., Fan, Q. and Liu, T., 2017, Total flavonoids extracted from Oxytropis falcata Bunge improve insulin resistance through regulation on the IKKβ/NF-κB inflammatory pathway, Evid. Based Complementary Altern Med. 2017: 2405124.
[42] M., S.S. and C., D.N., 2017, Influence of quercetin, naringenin and berberine on glucose transporters and insulin signalling molecules in brain of streptozotocin-induced diabetic rats, Biomed Pharma. 94: 605-611.
[43] Zhang, Z.F., Lu, J., Zheng, Y.L., Wu, D.M., Hu, B., Shan, Q., Cheng, W., Li, M.Q. and Sun, Y.Y., 2013, Purple sweet potato color attenuates hepatic insulin resistance via blocking oxidative stress and endoplasmic reticulum stress in high-fat-diet-treated mice, J. Nutr. Biochem. 24: 1008-1018.
[44] Kim, Y.J., Kim, H.C., Ko, H., Amor, E.C., Lee, J.W. and Yang, H.O., 2012, Inhibitory effects of aurentiacin from Syzygium samarangense on lipopolysaccharide-induced inflammatory response in mouse macrophages, Food Chem. Toxicol. 50: 1027-1035.
[45] Shen, S.C., Chang, W.C. and Chang, C.L., 2013, An extract from wax apple [Syzygium samarangense (Blume) Merrill & Perry] effects glycogenesis and glycolysis pathways in tumor necrosis factor-alpha-treated FL83B mouse hepatocytes, Nutrients 5: 455-467.