Effect of Osmotic Dehydration on Qualities of Intermediate Moisture Melon Product

Main Article Content

สุนัน ปานสาคร
จตุรงค์ ลังกาพินธุ์
ศุภณัฐ พริกบุญจันทร์
อาทิพัฒน์ ศรีชุมพล

Abstract

This research was experimental work to study the effect of osmotic dehydration on the qualities of intermediate moisture melon products. Melon (Cucumismelo var. Indorus) greennet varieties cubes (2 x 2 x 2 cm) were soaked in glucose concentration at 50 ºBrix for 5 hr and then drying at 60, 70, and 80 ºC. The initial moisture content was approximately 88 %wb and dried until its moisture content decreased to approximately 20 %wb. The drying times to reach the equilibrium moisture content for the fresh melon were 480, 420, and 390 min at 60, 70 and, 80 ºC, respectively. Physicochemical property and sensory qualities were investigated. It was found that the decrease of moisture in drying time was not a linear correlation with drying time. At high drying temperatures (80 ºC), the maximum drying rate was 5.588 kg/hr and decreased to 4.115 kg/hr and 4.359 kg/hr at 60 and 70 ºC, respectively. The result revealed that lightness (L*), moisture content, and water activity (aw) of dried osmotic dehydrated melon decreased. In contrast, a*, b*, ∆E* and total soluble solid increased with an increase in drying temperature. The highest overall liking score was obtained in dried osmotic dehydrated melon, which was soaked in 50 ºBrix of glucose combined with dried at 70 ºC.

Article Details

Section
Engineering and Architecture
Author Biographies

สุนัน ปานสาคร

ภาควิชาวิศวกรรมเกษตร คณะวิศวกรรมศาสตร์ มหาวิทยาลัยเทคโนโลยีราชมงคลธัญบุรี ตำบลคลองหก อำเภอธัญบุรี จังหวัดปทุมธานี 12110

จตุรงค์ ลังกาพินธุ์

ภาควิชาวิศวกรรมเกษตร คณะวิศวกรรมศาสตร์ มหาวิทยาลัยเทคโนโลยีราชมงคลธัญบุรี ตำบลคลองหก อำเภอธัญบุรี จังหวัดปทุมธานี 12110

ศุภณัฐ พริกบุญจันทร์

ภาควิชาวิศวกรรมเกษตร คณะวิศวกรรมศาสตร์ มหาวิทยาลัยเทคโนโลยีราชมงคลธัญบุรี ตำบลคลองหก อำเภอธัญบุรี จังหวัดปทุมธานี 12110

อาทิพัฒน์ ศรีชุมพล

ภาควิชาวิศวกรรมเกษตร คณะวิศวกรรมศาสตร์ มหาวิทยาลัยเทคโนโลยีราชมงคลธัญบุรี ตำบลคลองหก อำเภอธัญบุรี จังหวัดปทุมธานี 12110

References

Sacchetti, G., Gianotti, A. and Dalla, R.M., 2001, Sucrose-salt combined effect on mass transfer kinetics and product acceptability, Study on apple osmotic treatments, J. Food Eng. 49: 163-173.

Ferrari, C.C. and Hubinger, M.D., 2008, Evaluation of the mechanical properties and diffusion coefficients of osmodehydrated melon cubes, Int. J. Food Sci. Technol. 43: 2065-2074.

Therdthai, N., 2008, Agro-industrial Process Design, Kasetsart University, Bangkok. (in Thai)

Pattanapa, K., 2010, Process Development of Osmotically Dehydrated Mandarin cv. Sai-Namphaung, Master’s Thesis, Kasetsart University, Bangkok. (in Thai)

Dermesonlouoglou, E.K., Giannakourou, M.C. and Taoukis, P.S., 2007, Stability of dehydrofrozen tomatoes pretreated with alternative osmotic solutes, J. Food Eng. 78: 272-280.

Barrera, C., Betoret, N. and Fito, P., 2004, Ca2+ and Fe2+ influence on the osmotic dehydration kinetics of apple slices (var. Granny Smith), J. Food Eng. 65: 9-14.

Rozek, A., Garcia-Perez, J., Lopez, F., Guell, C. and Ferrando, M., 2010, Infusion of grape phenolics into fruits and vegetables by osmotic treatment: Phenolic stability during air drying, J. Food Eng. 99: 142-150.

Sirijariyawat, A., 2015, Influence of osmodehydrofreezing on melon quality, Publ. Health J. Burapha Univ. 20: 118-130.

Chandra, S. and Kumari, D., 2015, Recent development in osmotic dehydration of fruit and vegetables: A review, Crit. Rev. Food Sci. Nutr. 55: 552-561.

Torregiani, D., 1993, Osmotic dehydration in fruit and vegetable processing, Food Res. Int. 26: 59-69.

Ikoko, J. and Kuri, V., 2007, Osmotic pre-treatment effect on fat intake reduction and eating quality of deep-fried plantain, Food Chem. 102: 523-531.

Chinnasarn, S., Pleansri, A. and Manomaihataitip, P., 2013, Effect of osmotic solution on mass transfer and quality of inter mediate moisture leech lime product, Agric. Sci. J. 44(2)(Suppl.): 1-4. (in Thai)

Aktas, T., Ulger, P., Daglioglu, F. and Hasturk, F., 2013, Change of nutritional and physical quality characteristics during storage of osmotic pretreated apple before hot air drying and sensory evaluation, J. Food Qual. 36: 411-425.

Ritmanee, T., 2017, Quality and drying behavior of dried star fruits by osmotic dehydration method, EAU Herit. J. Sci. Technol. 11(1): 148-159. (in Thai)

Wolbang, C.M., Fitos, J.L. and Treeby, M.T., 2008, The effect of high pressure processing on nutritional value and quality attributes of Cucumis melo L. Innov. Food Sci. Emerg. Technol. 9(2): 196-200.

Laur, L.M. and Tian L., 2011, Provitamin A and vitamin C contents in selected California-grown cantaloupe and Honey dew melons and imported melons, J. Food Comp. Anal. 24: 194-201.

Torregiani, D., 1993, Osmotic dehydration in fruit and vegetable processing, Food Res. Int. 26: 59-69.

Yetenayet, B. and Hosahalli, R., 2010, Going beyond conventional osmotic dehydration for quality advantage and energy savings, Eur. J. Appl. Sci. Technol. 1: 1-15.

Changchub, L. and Lertworasirikul, S., 2011, Process development of osmotic dehydrated lemon albedo, Proceedings of 49th Kasetsart University Annual Conference: Agro-Industry, Kasetsart University, Bangkok. (in Thai)

Khamchu, W. and Yuenyongputtakal, W., 2007, Effect of sucrose and NaCl on mass transfer during osmotic treatment of Muskmelon (Cucumis melo L.), Agric. Sci. J. 38(6)(Suppl.): 91-94. (in Thai)

Kolawole, O.F., Joseph, C.I. and Funke, A.A., 2007, Kinetics of mass transfer and color changes during osmotic dehydration of watermelon, J. Food Eng. 80: 979-985.

AOAC, 2005, Official Methods of Analysis of the Association of Official Analytical Chemists, 18th Ed., Association of Official Analytical Chemists, Gaithersburg MD.

Rhim, J.W., Nunes, R.V., Jones, V.A., Swartzel, K.R., 1889, Kinetics of color change of grape juice generated using linearly increasing temperature, J. Food Sci. 54: 776-777.

Bartolomé, P.A., Rupérez, P. and Fúster, C., 1996, Non-volatile organic acids, pH and titratable acidity changes in pineapple fruit slices during frozen storage, J. Sci.

Food Agric. 70: 475-480.

Tovar, B., García, H.S. and Mata, M., 2005, Evolution of carbohydrates of pre-cut mango slices subjected to osmotic dehydration, Plant Food Human Nutr. 60: 181-186.

Aanpreung, P., 2008, Principles of food sensory analysis, 2nd Ed., Chulalongkorn University Printing House, Bangkok. (in Thai)

Liemlaem, S., 2014, Quality of Sugaring Figs (Ma Nod) Dehydrated by Tray Dryer, Master’s Theses, Chiang Mai University, Chiang Mai. (in Thai)

Saowapark, S., Summawattana, T. and Artnarong, S., 2014, Effect of drying temperature on quality of dried Garcinia (Garcinia atroviridis), Agric. Sci. J. 45(2) (Suppl.): 37-40. (in Thai)

Mastrantonia, S.D.S., Pereira, L.M. and Hubinger, M.D., 2006, Mass transfer and diffusion coefficient determination in osmotically dehydrated guavas, pp. 860-870, Proceedings of 15th International Drying Symposium (IDS 2006), Budapest.

Khoyi, M.R. and Hessari, J., 2007, Osmotic dehydration kinetics of apricot using sucrose solution, J. Food Eng. 78: 1355-1360.

Tortoe, C., 2010, A review of osmodehydration for food industry, Afr. J. Food Sci. 4: 303-324.

Khan, M.R., 2012, Osmotic dehydration technique for fruit preservation: A review, Pak. J. Food Sci. 22: 71-85.

Rattanapanon, N., 2000, Food Chemistry, 4th Ed., Odean Store Publisher, Bangkok. (in Thai)

Fellows, P., 2000, Food Processing Techno logy Principles and Practice, 2nd Ed., Woodhead Publishing, Ltd., Cambridge, 575 p.