Acceptor Specificity and Transglycosylation Reaction of Recombinant Amylomaltase on the Synthesis of Glucosyl-Polyol
Main Article Content
Abstract
Amylomaltase (AMase) catalyzes various reactions, including an intermolecular transglycosylation reaction to produce functional glycosides, which are practically used in many industries. In this study, the p19bAMY plasmid was constructed from pET-19b vector containing Thermus sp. amylomaltase gene. This plasmid was expressed in E. coli BL21 (DE3) for producing AMase. The optimal expression was obtained when the AMase-expressing cells were cultured at 37oC 250 rpm for 24 hours with 0.8 mM IPTG. The crude AMase was subsequently purified to 9-fold by HisTrap FFTM affinity column with the specific activity of 150 units/mg and 36% yield. The relative molecular mass of the purified enzyme was 60 kDa, determined by 10% SDS-PAGE. Moreover, the acceptor specificity was investigated from transglycosylation reaction using tapioca starch as glycosyl donor and various polyols as acceptors. Among polyol acceptors, erythritol gave the highest activity, followed by maltitol and xylitol, respectively. Upon analysis of the product by TLC, the yield of synthesized erythritol glucosides (EG1-4) was 29.3% (w/w).
Article Details
References
Yu, H., and Chen, X., 2008, Enzymatic synthesis of carbohydrate-containing biomolecules, pp.1-22, Wiley Encyclopedia of Chemical Biology.
Jaitak, V., Kaul, V. K., Kumar, N., Singh, B., Savergave, L. S., Jogdand, V. V., and Nene, S., 2009, Simple and efficient enzymatic transglycosylation of stevioside by β-cyclodextrin glucanotransferase from Bacillus firmus, Biotechnol. Lett. 31:1415-1420.
Jung, S. W., Kim, T. K., Lee, K. W., and Lee, Y. H., 2007, Catalytic properties of β-cyclodextrin glucanotransferase from Alkalophilic Bacillus sp. BL-12 and intermolecular transglycosylation of stevioside, Biotechnol. Bioprocess Eng. 12: 207-212.
Przylas, I., Tomoo, K., Terada, Y., Takaha, T., Fujii, K., Saenger, W., and Sträter, N., 2000, Crystal structure of amylomaltase from Thermus aquaticus, a glycosyltransferase catalysing the production of large cyclic glucans, J. Mol. Biol. 296: 873-886.
Takaha, T., and Smith, S. M., 1999, The functions of 4-α-glucanotransferases and their use for the production of cyclic glucans, Biotechnol. Genet. Eng. Rev. 16:257-280.
Bhuiyan, S. H., Kitaoka, M., and Hayashi, K., 2003, A cycloamylose-forming hyperthermostable 4-α-glucanotransferase of Aquifex aeolicus expressed in Escherichia coli, J. Mol. Catal. B: Enzym.22: 45-53.
Szejtli, J., 1988, Cyclodextrin Technology, Dordrecht: Kluwer Academic Publisher.
Boos, W., and Shuman, H., 1998, Maltose/maltodextrin system of Escherichia coli: transport, metabolism, and regulation, Microbiol. Mol. Biol. Rev. 62: 204-229.
Monod, J., and Torriani, A. M., 1950, Amylomaltase of Escherichia coli, Annales de l'Institut Pasteur. 78(1): 65-77.
Kaper, T., van der Maarel, M., Euverink, G. J., and Dijkhuizen, L., 2004, Exploring and exploiting starch-modifying amylomaltases from thermophiles, Biochem. Soc. Trans. 32: 279-282.
Marcus, J. B., 2013, Carbohydrate basics: sugars, starches and fibers in foods and health, Food science and the culinary arts, pp. 149-187.
Rapaille, A. G. J., Heume M., 2016, Sugar Alcohols, In Caballero B, Finglas PM, Toldrá F, (Ed.), Encyclopedia of Food and Health, Oxford: Academic Press
BeMiller, J. N., 2019, Carbohydrate reactions. carbohydrate chemistry for food scientists, AACC International Press. [14] Frigaard, N. U., 2018, Sugar and Sugar Alcohol Production in Genetically Modified Cyanobacteria.
Granström, T., and Leisola, M., 2013, Microbial production of xylitol and other polyols, In microbial production of food ingredients, pp 469-493.
Watanasatitarpa, S., Rudeekulthamrong, P., Krusong, K., Srisimarat, W., Zimmermann, W., Pongsawasdi, P., and Kaulpiboon, J., 2014, Molecular mutagenesis at Tyr-101 of the amylomaltase transcribed from a gene isolated from soil DNA, Appl. Biochem. Microbiol. 50: 243-252.
Park, J. H., Kim, H. J., Kim, Y. H., Cha, H., Kim, Y. W., Kim, T. J., Kim, Y. R., and Park, K. H., 2007, The action mode of Thermus aquaticus YT-1 4-α-glucanotransferase and its chimeric enzymes introduced with starch-binding domain on amylose and amylopectin, Carbohydr. Polym. 67:164-173.
Bradford, M. M., 1976, A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Anal. Biochem. 72: 248-254.
Miwa, I., Okuda, J., Maeua, K., and Okuda, G., 1972, Mutarotase effect on colorimetric determination of blood glucose with β-D-glucose oxidase, Clinica Chimica Acta. 37: 538-540.
Weber, K., and Osborn, M., 1975, Proteins and SDS: Molecular weight determination on polyacrylamide gels and related procedures, The Proteins, Academic Press, New York.
Chotipanang, K., Bhunthumnavin, W., and Prousoontorn, M. H., 2011, Synthesis of alkyl glycosides from cyclodextrin using cyclodextrin glycosyltransferase from Paenibacillus sp. RB01, J. Inclusion Phenom. Macrocyclic Chem. 70: 359-368.
Kaulpiboon, J., and Pongsawasdi, P., 2005, Purification and characterization of cyclodextrinase from Paenibacillus sp. A11, Enzyme Microb. Technol. 36: 168-175.
Kaulpiboon, J., Poomipark, N., and Watanasatitarpa, S., 2016, Expression and characterization of amylomaltase gene involved in the large-ring cyclodextrin and isomalto-oligosaccharide production, Thammasat Int. J. Sci. Technol. 21: 18-28.
Lee, B. H., Oh, D. K., and Yoo, S. H., 2009, Characterization of 4-α-glucanotransferase from Synechocystis sp. PCC 6803 and its application to various corn starches, New Biotechnol. 26: 29-36.
Bang, B. Y., Kim, H. J., Kim, H., Baik, M.Y., Ahn, S. C., Kim, C., and Park, C. S., 2006, Cloning and overexpression of 4-α glucanotransferase from Thermus brockianus (TBGT) in E. coli, J. Microbiol. Biotechnol. 16: 1809-1813.
Terada, Y., Fujii, K., Takaha, T., and Okada, S., 1999, Thermus aquaticus ATCC 33923 amylomaltase gene cloning and expression and enzyme characterization: production of cycloamylose, Appl. Environ. Microbiol. 65: 910-915.
Takaha, T., Yanase, M., Okada, S., and Smith, S. M., 1993, Disproportionating enzyme (4-α-glucanotransferase; EC 2.4.1.25) of potato: purification, molecular cloning, and potential role in starch metabolism, J. Biol. Chem. 268: 1391-1396.
Xavier, K. B., Peist, R., Kossmann, M., Boos, W., and Santos, H., 1999, Maltose metabolism in the hyperthermophilic archaeon thermococcus purification and characterization of key enzymes, J. Bacteriol. 181:3358-3367.
Srisimarat, W., Powviriyakul, A., Kaulpiboon, J., Krusong, K., Zimmermann, W., and Pongsawasdi, P., 2011, A novel amylomaltase from Corynebacterium glutamicum and analysis of the large-ring cyclodextrin products, J. Inclusion Phenom. Macrocyclic Chem. 70: 369-375.
Kitahata, S., Murakami, H., and Okada, S., 1989, Purification and some properties of amylomaltase from Escherichia coli IFO 3806, Agric. Biol. Chem. 53: 2653-2659.