ตำแหน่งแก้ไขอาร์เอ็นเอของยีน ATP Synthase ในไมโตคอนเดรียของตาลโตนด

Main Article Content

อาภากร สกุลสถาพร
สมศักดิ์ อภิสิทธิวาณิช
ศุภชัย วุฒิพงศ์ชัยกิจ

บทคัดย่อ

บทคัดย่อ


การแก้ไขอาร์เอ็นเอ (RNA editing) เป็นการเปลี่ยนแปลงข้อมูลทางพันธุกรรมบนอาร์เอ็นเอในระดับโพสทรานสคริปชัน ซึ่งพบทั้งในไมโตคอนเดรียและคลอโรพลาสต์ โดยทั่วไปเบสไซโตซีน (C) ที่ตำแหน่งจำเพาะบนอาร์เอ็นเอจะถูกเปลี่ยนไปเป็นเบสยูราซิล (U) เพื่อให้ได้รหัสสำหรับการแปลเป็นโปรตีนนั้นทำหน้าที่ได้ อย่างไรก็ตาม กลไกของกระบวนการการแก้ไขอาร์เอ็นเอนั้นยังไม่กระจ่างชัด ยีนเอทีพี ซินเทส (ATP-synthase) ทำหน้าที่สร้างเอทีพีคอมเพลกซ์ (ATP complexes) ซึ่งเป็นเอนไซม์ที่สำคัญทำหน้าที่สังเคราะห์ ATP ในไมโตคอนเดรีย ในการศึกษาครั้งนี้ ได้ตรวจสอบตำแหน่งการแก้ไขอาร์เอ็นเอในสมาชิกของยีนกลุ่ม (ATP-synthase) ในไมโตคอนเดรียของตาลโตนด เมื่อวิเคราะห์ตำแหน่งการแก้ไขอาร์เอ็นเอของยีน atp1, atp6 และ atp9 โดยใช้โปรแกรมทำนายตำแหน่งและลำดับเบสที่โคลนได้จากจีโนมของไมโตคอนเดรียและซีดีเอ็นเอ พบการแก้ไข 11, 25 และ 10 ตำแหน่ง ในยีน atp1, atp6 และ atp9 ตามลำดับ การแก้ไขทั้งหมดเกิดในเบสชนิด C เปลี่ยนไปเป็นเบส U โดยส่วนใหญ่เกิดที่ตำแหน่งเบสที่สองของโคดอนและพบบ้างในตำแหน่งเบสที่หนึ่งของโคดอน การเปลี่ยนแปลงเป็นเบส U นี้เป็นสาเหตุการเปลี่ยนแปลงของกรดอะมิโนในทุกตำแหน่ง ผลการทดลองนี้สนับสนุนความสำคัญของการแก้ไขอาร์เอ็นเอสำหรับการผลิตเอนไซม์ ATP-synthase ที่ทำหน้าที่อยู่บนเยื่อหุ้มชั้นในของไมโตคอนเดรีย 


คำสำคัญ : ยีนเอทีพี ซินเทส; ตาลโตนด; การแก้ไขอาร์เอ็นเอ

Article Details

ประเภทบทความ
Biological Sciences
ประวัติผู้แต่ง

อาภากร สกุลสถาพร

ศูนย์เทคโนโลยีชีวภาพเกษตร มหาวิทยาลัยเกษตรศาสตร์ วิทยาเขตกำแพงแสน ตำบลกำแพงแสน อำเภอกำแพงแสน จังหวัดนครปฐม 73140

สมศักดิ์ อภิสิทธิวาณิช

ศูนย์เทคโนโลยีชีวภาพเกษตร มหาวิทยาลัยเกษตรศาสตร์ วิทยาเขตกำแพงแสน ตำบลกำแพงแสน อำเภอกำแพงแสน จังหวัดนครปฐม 73140

ศุภชัย วุฒิพงศ์ชัยกิจ

ภาควิชาพันธุศาสตร์ คณะวิทยาศาสตร์ มหาวิทยาลัยเกษตรศาสตร์ วิทยาเขตบางเขน แขวงลาดยาว เขตจตุจักร กรุงเทพมหานคร 10900

เอกสารอ้างอิง

[1] Venkatasubban, K., 1945, Cytological studies in Palmae, Proc. Ind. Acad. Sci. Sec. B 22: 193-207.
[2] Ariyasena, D.D., Jansz, E.R. and Abeysekera, A.M., 2001, Some studies directed at increasing the potential use of palmyrah (Borassus flabellifer L) fruit pulp, J. Sci. Food Agric. 81: 1347-1352.
[3] George, J. and Karun, A., 2011, Marker assisted detection of seed sex ratio in palmyrah palm (Borassus flabellifer L.), Curr. Sci. (Bangalore) 100: 922-925.
[4] George, J., Karun, A., Manimekalai, R., Rajesh, M.K. and Remya, P., 2007, Identification of RAPD markers linked to sex determination in palmyrah (Borassus flabellifer L.), Curr. Sci. (Bangalore) 93: 1075-1077.
[5] Ruttajorn, K., 2006, Sex Identifying in Palmyra Palm (Borassus fiabellifer L.) Using Botanical Characteristics and Amplified Fragment Length Polymorphism (AFLP) Marker, M.S. Thesis, Thaksin University, Songkhla, 74 p.
[6] George, J., Venkataramana, K.T., Nainar, P., Rajesh, M.K. and Karun, A., 2016, Evaluation of molecular diversity of ex situ conserved germplasm of palmyrah (Borassus flabellifer L.) accessions using RAPD markers, J. Plant. Crops 44: 96-102.
[7] Ponnuswami, V., 2010, Genetic diversity in palmyrah genotypes using morphological and molecular markers, Elec. J. Plant Breed. 1: 556-567.
[8] Noblick, L.R., 1993, The morphology and taxonomy of the Arecaceae (Palmae) in 1st International Symposium on Ornamental Palms, 1: 19-25
[9] Dransfield, J., 2014, The genus Borassodendron (Palmae) in Malesia, Reinwardtia 8: 351-363.
[10] Berry, E.J. and Gorchov, D.L., 2004, Reproductive biology of the dioecious understorey palm Chamaedorea radicalis in a Mexican cloud forest: Pollination vector, flowering phenology and female fecundity, J. Trop. Ecol. 20: 369-376.
[11] Masmoudi-Allouche, F., Châari-Rkhis, A., Kriaâ, W., Gargouri-Bouzid, R., Jain, S. M. and Drira, N., 2009, In vitro hermaphrodism induction in date palm female flower, Plant Cell Rep. 28: 1-10.
[12] Geisler, D.A., Päpke, C, Obata, T., Nunes-Nesi, A., Matthes, A., Schneitz, K., Maximova, E, Araújo, W.L., Fernie, A.R. and Persson, S., 2012, Downregulation of the δ-subunit reduces mitochondrial ATP synthase levels, alters respiration, and restricts growth and gametophyte development in Arabidopsis, Plant Cell 24: 2792-2811.
[13] Carlsson, J., Leino, M., Sohlberg, J., Sundström, J.F. and Glimelius, K., 2008, Mitochondrial regulation of flower development, Mitochondrion 8: 74-86.
[14] Busi, M.V., Gomez-Lobato, M.E., Turowski, V.R., Casati, P., Zabaleta, E.J., Gomez-Casati, D.F. and Araya, A., 2011, Effect of mitochondrial dysfunction on carbon metabolism and gene expression in flower tissues of Arabidopsis thaliana, Mol. Plant 4: 127-143.
[15] Wang, J., Cao, M.J., Pan, G.T., Lu, Y.L. and Rong, T.Z., 2009, RNA editing of mitochondrial functional genes atp6 and cox2 in maize (Zea mays L.), Mitochondrion 9: 364-369.
[16] Hu, J., Yi, R., Zhang, H. and Ding, Y., 2013, Nucleo-cytoplasmic interactions affect RNA editing of cox2, atp6 and atp9 in alloplasmic male-sterile rice (Oryza sativa L.) lines, Mitochondrion 13: 87-95.
[17] Wei, L., Yan, Z.X. and Ding, Y., 2008, Mitochondrial RNA editing of F0-ATPase subunit 9 gene (atp9) transcripts of Yunnan purple rice cytoplasmic male sterile line and its maintainer line, Acta Physiol. Plant. 30: 657-662.
[18] Jiang, W., Yang, S., Yu, D. and Gai, J. 2011, A comparative study of ATPase subunit 9 (Atp9) gene between cytoplasmic male sterile line and its maintainer line in soybeans, Afr. J. Biotechnol. 10: 10387-10392.
[19] Chateigner-Boutin, A.L. and Small, I., 2010, Plant RNA editing, RNA Biol. 7: 213-219.
[20] Bayer-Császár, E., Haag, S., Jörg, A., Glass, F., Härtel, B., Obata, T., Meyer, E.H., Brennicke, A. and Takenaka, M., 2017, The conserved domain in MORF proteins has distinct affinities to the PPR and E elements in PPR RNA editing factors, Biochimica et Biophysica Acta (BBA)-Gene Regulatory Mechanisms 1860: 813-828.
[21] Alverson, A.J., Wei, X., Rice, D.W., Stern, D.B., Barry, K. and Palmer, J.D., 2010, Insights into the evolution of mitochondrial genome size from complete sequences of Citrullus lanatus and Cucurbita pepo (Cucurbitaceae), Mol. Biol. Evol. 27: 1436-1448.
[22] Mower, J.P., Case, A.L., Floro, E.R. and Willis, J.H., 2012, Evidence against equimolarity of large repeat arrangements and a predominant master circle structure of the mitochondrial genome from a monkeyflower (Mimulus guttatus) lineage with cryptic CMS, Genome Biol. Evol. 4:
670-686.
[23] Hepburn, N.J., Schmidt, D.W. and Mower, J.P., 2012, Loss of two introns from the Magnolia tripetala mitochondrial cox2 gene implicates horizontal gene transfer and gene conversion as a novel mechanism of intron loss, Mol. Biol. Evol. 29: 3111-3120.
[24] Aljohi, H.A., Liu, W., Lin, Q., Zhao, Y., Zeng, J., Alamer, A., Alanazi, I.O., Alawad, A.O., Al-Sadi, A.M. and Hu, S., 2016, Complete Sequence and Analysis of Coconut Palm (Cocos nucifera) Mitochondrial Genome, PLoS One 11: e0163990.
[25] Wang, G., Zhong, M., Shuai, B., Song, J., Zhang, J., Han, L., Ling, H., Tang, Y., Wang, G. and Song, R., 2017, E+ subgroup PPR protein defective kernel 36 is required for multiple mitochondrial transcripts editing and seed development in maize and Arabidopsis, New Phytol. 214: 1563-1578.
[26] Bégu, D., Graves, P.V., Domec, C., Arselin, G., Litvak, S. and Araya, A., 1990, RNA editing of wheat mitochondrial ATP synthase subunit 9: direct protein and cDNA sequencing, Plant Cell 2: 1283-1290.
[27] Sakulsathaporn, A., Suputtitada, S., Apisitwanich, S. and Vuttipongchikij, S., 2012, RNA Editing Site of NDH Genes in Borassus flabellifer, 1st Mae Fah Luang University International Conference, Chiangrai.
[28] Yura, K. and Go, M., 2008, Correlation between amino acid residues converted by RNA editing and functional residues in protein three-dimensional structures in plant organelles, BMC Plant Biol. 8: 79.
[29] Singh, M., 2005, Predicting Protein Secondary and Supersecondary Structure in Handbook of Computational Molecular Biology, Chapman and Hall/CRC.