การยับยั้ง Listeria monocytogenes โดยสารคล้ายแบคเทอริโอซินที่ผลิตโดย Leuconostoc lactis BAN1.1

Main Article Content

ศรีสุดา กวยาสกุล

บทคัดย่อ

Leuconostoc lactis BAN1.1 เป็นแบคทีเรียแลคติก (LAB) ที่แยกได้จากเปลือกกล้วย สามารถสร้างสารคล้ายแบคเทอริโอซินที่ยับยั้งการเจริญของเชื้อก่อโรคในอาหารที่สำคัญ คือ Listeria monocytogenes สารออกฤทธิ์ดังกล่าวพบว่าเป็นสารโปรตีน เนื่องจากมีความไวต่อเอนไซม์ย่อยโปรตีน ดังนั้นงานวิจัยนี้จึงได้มุ่งเน้นที่จะศึกษาสภาวะที่จำเป็นต่อการสร้างสารคล้ายแบคเทอริโอซินนี้ โดยผลการศึกษาพบว่าอาหารเลี้ยงเชื้อที่ประกอบด้วยน้ำตาลฟรุคโตส 2 % yeast extract 2 % KH2PO4 ความเข้มข้น 0.2 % และ Tween 80 ความเข้มข้น 0.2 % จะส่งเสริมให้เกิดกิจกรรมการยับยั้งสูงสุด รวมทั้งอุณหภูมิและพีเอชที่เหมาะสม คือ 25-30 องศาเซลเซียส และ 6.5 ตามลำดับ นอกจากนี้ขั้นตอนการทำ dialysis สารออกฤทธิ์ทางชีวภาพพบว่าทำให้สารมีเข้มข้นเพิ่มขึ้น และเมื่อนำสารที่ผ่านการ dialysis มาทดสอบพบว่ากิจกรรมการยับยั้งเชื้อเพิ่มขึ้นเกือบ 2 เท่า สารนี้ยังทนต่อพีเอชในช่วงกว้างและทนอุณหภูมิสูงได้ ส่วนขั้นตอนการจุ่มผักกาดหอมสดลงในสารคล้ายแบคเทอริโอซินพบว่าสามารถลดปริมาณ L. monocytogenes ลงได้ 3.49±0.07 log CFU/g โดยที่กล่าวมาทั้งหมดนั้นเห็นได้ว่าสารคล้ายแบคเทอริโอซินนี้มีศักยภาพในการนำไปใช้เป็นสารถนอมอาหารทางชีวภาพกับผลิตภัณฑ์ผักและผลไม้สดได้

Article Details

ประเภทบทความ
Biological Sciences
ประวัติผู้แต่ง

ศรีสุดา กวยาสกุล, Naresuan University

ภาควิชาจุลชีววิทยาและปรสิตวิทยา คณะวิทยาศาสตร์การแพทย์ มหาวิทยาลัยนเรศวร ตำบลท่าโพธิ์ อำเภอเมือง จังหวัดพิษณุโลก 65000

เอกสารอ้างอิง

Leong, D., NicAogáin, K., Luque-Sastre, L., McManamon, O., Hunt, K., Alvarez-Ordóñez, A., Scollard, J., Schmalenberger, A., Fanning, S., O’Byrne, C. and Jordan, K., 2017, A 3-year multi-food study of the presence and persistence of Listeria monocytogenes in 54 small food businesses in Ireland, Int. J. Food Sci. Technol. 249: 18-26.

Pouillot, R., Klontz, K.C., Chen, Y., Burall, L.S., Macarisin, D., Doyle, M. and van Doren, J.M., 2016, Infectious dose of Listeria monocytogenes in outbreak linked to ice cream, United States, 2015, Emerging Infec. Dis. 22: 2113-2119.

Chen, Y., Burall, L.S., Macarisin, D., Pouillot, R., Strain, E., de Jesus, A.J. and Datta, A.R., 2016, Prevalence and level of Listeria monocytogenes in ice cream linked to a listeriosis outbreak in the united states, J. Food Protect. 79: 1828-1832.

Gomez-Sala, B., Munoz-Atienza, E., Diep, D.B., Feito, J., del Campo, R., Nes, I.F., Herranz, C., Hernandez, P.E. and Cintas, L.M., 2019, Biotechnological potential and in vitro safety assessment of Lactobacillus curvatus BCS35, a multibacteriocinogenic strain isolated from dry-salted cod (Gadus morhua), LWT-Food Sci. Technol. 112: 108219.

Mokoena, M.P., 2017, Lactic acid bacteria and their bacteriocins: classification, biosynthesis and applications against uropathogens: A mini-review, Molecules 22: 1255.

Zacharof, M.P., Lovitt, R.W., 2012, Bacteriocins produced by lactic acid bacteria: A review article, APCBEE Procedia 2: 50-56.

Alvarez-Sieiro, P., Montalbán-López, M., Mu, D. and Kuipers, O.P., 2016, Bacteriocins of lactic acid bacteria: Extending the family, Appl. Microbiol. Biotechnol. 7: 2939-2951.

McManamon, O., Kaupper, T., Scollard, J. and Schmalenberger, A., 2019, Nisin application delays growth of Listeria monocytogenes on fresh-cut iceberg lettuce in modified atmosphere packaging, while the bacterial community structure changes within one week of storage, Postharvest Biol. Technol. 147: 185-195.

Bárcena, B.J.M., Siñeriz, F., de Gonzáles Llana, D., Rodríguez, A. and Suárez, B.E., 1998, Chemostat production of plantaricin C by Lactobacillus plantarum LL41, Appl. Environ. Microbiol. 64: 3512-3514.

Callewaert, R. and de Vuyst, L., 2000, Bacteriocin production with Lactobacillus amylovorus DCE 471 is improved and stabilized by fed-batch fermentation, Appl. Environ. Microbiol. 66: 606-613.

Kumar, M., Jain, A.K., Ghosh, M. and Ganguli, A., 2012, Statistical optimization of physical parameters for enhanced bacteriocin production by L. casei, Biotech. Bioprocess Eng. 17: 606-616.

Bhuvaneswari, S., Madhavan, S. and Panneerselvam, A., 2015, Optimization of bacteriocin production by Bacillus subtilis BMP01 isolated from Solanum trilobatum L., Int. J. Curr. Microbiol. Appl. Sci. 4: 617-626.

Lyapparaj, P., Maruthiah, T., Ramasubbura yan, R., Prakash, S., Kumar, C., Immanuel, G. and Palavesam, A., 2013, Optimization of bacteriocin production by Lactobacillus sp. MSU3IR against shrimp bacterial pathogens, Aquat. Biosyst. 9: 12.

Embaby, A.M., Heshmat, Y., Hussein, A. and Marey, H.S., 2014, A sequential statistical approach towards an optimized production of a broad spectrum bacteriocin substance from a soil bacterium Bacillus sp. YAS 1 strain, Sci. World J. 2014: 396304.

Yang, E., Fan, L., Yan, J., Jiang, Y., Doucette, C., Fillmore, S. and Walker, B. 2018, Influence of culture media, pH and temperature on growth and bacteriocin production of bacteriocinogenic lactic acid bacteria, AMB Expr. 8: 10.

Balciunas, E.M., Al-Arni, S., Converti, A., Leblanc, J.G. and de Souza Oliveira, R.P., 2016, Production of bacteriocin-like inhibitory substances (BLIS) by Bifidobacterium lactis using whey as a substrate, Int. J. Dairy Technol. 69: 236-242.

Masuda, Y., Perez, R.H., Zendo, T. and Sonomoto, K., 2016, Nutrition-adaptive control of multiple-bacteriocin production by Weissella hellenica QU 13, J. Appl. Microbiol. 120: 70-79.

Telke, A.A., Ovchinnikov, K.V., Vuoristo, K.S., Mathiesen, G., Thorstensen, T. and Diep, D.B., 2019, Over 2000-fold increased production of the leaderless bacteriocin Garvicin KS by increasing gene dose and optimization of culture conditions, Front. Microbiol. 10: 389.

Drosinos, E.H., Mataragas, M., Nasis, P., Galiotou, M. and Metaxopoulos, J., 2005, Growth and bacteriocin production kinetics of Leuconostoc mesenteroides E131, J. Appl. Microbiol. 99: 1314-1323.

Jana, S.C., Madhusree, C. and Utpal, R., 2019, Optimization of media and culture conditions for improved production of bacteriocin by using conventional one-factor-at-a-time (OFAT) method, EC. Microbiol. 15: 251-258.

Todorov, S.D. and Dicks, L.M.T., 2004, Effect of medium components on bacteriocin production by Lactobacillus pentosus ST151BR, a strain isolated from beer produced by the fermentation of maize, barley and soy flour, World J. Microbiol. Biotechnol. 20: 643-650.

Hartayanie, L., Lindayani, and Lorentia, S., 2018, The effect of carbon and nitrogen supplementation on bacteriocin produc tion of Lactic acid bacteria from pickled yellow bamboo shoots (Dendrocalamus asper), Microbiol. Indonesia 12: 7-14.

Barbosa, A.A.T., Mantovani, H.C. and Jain, S., 2017, Bacteriocins from lactic acid bacteria and their potential in the preservation of fruit products, Crit. Rev. Biotechnol. 37: 852-864.

Barbosa, M.S., Jurkiewicz, C., Landgraf, M., Todorov, S.D. and Franco, B.D.G.M., 2018, Effect of proteins, glucose and NaCl on growth, biosynthesis and functionality of bacteriocins of Lactobacillus sakei subsp. sakei 2a in foods during storage at 4 ºC: Tests in food models, LWT-Food Sci. Technol. 95: 167-171.

Lechiancole, T., Ricciardi, A. and Parente, E., 2002, Optimization of media and fermentation conditions for the growth of Lactobacillus sakei, Ann. Microbiol. 52: 257-274.

Dey, B.C., Rai, N., Das, S., Mandal, S. and Mandal, V., 2019, Partial purification, characterization and mode of action of bacteriocins produced by three strains of Pediococcus sp., J. Food Sci. Technol. 56: 2594-2604.

Danial, E.N., Al-Zahrani, S.H.M. and Al-Mahmoudi, Z.A.M., 2016, Enhancement of novel extracellular bacteriocin production by media optimization using LAB isolate from meat, J. Appl. Pharm. Sci. 6: 020-027.

Hayek, S.A. and Ibrahim, S.A., 2013, Current limitations and challenges with Lactic acid bacteria: A review, Food Nutr. Sci. 4: 73-87.

Choi, H., Lee, H., Her, S., Oh, D. and Yoon, S., 1999, Partial characterization and cloning of leuconocin J, a bacteriocin produced by Leuconostoc sp. J2 isolated from the Korean fermented vegetable kimchi, J. Appl. Microbiol. 86: 175-181.

Thakur, R.L. and Roy, U., 2009, Anti bacterial activity of Leuconostoc lactis Isolated from raw cattle milk and its preliminary optimization for the bacteriocin production, Res. J. Microbiol. 4: 122-131.

Wulijideligen, Asahina, T., Hara, K., Arakawa, K., Nakano, H. and Miyamoto, T., 2012, Production of bacteriocin by Leuconostoc mesenteroides 406 isolated from Mongolian fermented mare's milk, airag, Anim. Sci. J. 83: 704-711.

Revol-Junelles, A.M., Mathis, R., Krier, F., Fleury, Y., Delfour, A. and Lefebvre, G., 1996, Leuconostoc mesenteroides subsp. mesenteroides FR52 synthesizes two distinct bacteriocins, Lett. Appl. Microbiol. 23: 120-124.

de Giani, A., Bovio, F., Forcella, M., Fusi, P., Sello, G. and di Gennaro, P., 2019, Identification of a bacteriocin-like compound from Lactobacillus plantarum with antimicrobial activity and effects on normal and cancerogenic human intestinal cell, AMB Express 9: 88.

Sidooski, T., Brandelli, A., Bertoli, S.L., Souza, C.K. and Carvalho, L.F., 2019, Physical and nutritional conditions for optimized production of bacteriocins by lactic acid bacteria – A review, Crit. Rev. Food Sci. Nutr. 59: 2839-2849.

Abbasiliasi, S., Tan, J.S., Tengku Ibrahim, T.A., Bashokouh, F., Ramakrishnan, N.R., Mustafa, S. and Ariff, A.B., 2017, Fermenta tion factors influencing the production of bacteriocins by lactic acid bacteria: A review, RSC Adv. 47: 29395-29420.

Hwang, I.C., Oh, JK., Kim, SH., Oh, S. and Kang, D.K., 2018, Isolation and characteri zation of an antilisterial bacteriocin from Leuconostoc lactis SD501, Korean J. Food Sci. Anim. Res. 38: 1008-1018.

Silva, C.C.G, Silva, S.P.M. and Ribeiro, S.C., 2018, Application of bacteriocins and protective cultures in dairy food preservation, Front. Microbiol. 9: 594.

Faye, T., Brede, D.A., Langsrud, T., Nes, I.F. and Holo, H., 2002, An antimicrobial peptide is produced by extracellular processing of a protein from Propioni bacterium jensenii, J. Bacteriol. 84: 3649-3656.

Lisboa, M.P., Bonatto, D., Bizani, D., Henriques, J.P. and Brandelli, A., 2006, Characterization of a bacteriocin-like substance produced by Bacillus amyloliquefaciens isolated from the Brazilian, Atlantic forest. Int. Microbiol. 9: 111-118.

Kindoli, S., Lee, H.A. and Kim, J.H., 2012, Properties of Bac W42, a bacteriocin produced by Bacillus subtilis W42 isolated from cheonggukjang, J. Microbiol. Biotech. 22: 1092-1100.

Cobo, H., Abriouel, R., Lucas, N., Ben, E., Valdivia, R. and Gálvez, A., 2009, Enhanced bactericidal activity of enterocin AS-48 in combination with essential oils, natural bioactive compounds and chemical preservatives against Listeria monocyto genes in ready-to-eat salad, Food Chem. Toxicol. 47: 2216-2223.

Ponce, A., Moreira, M.R., del Valle, C. and Roura, S., 2008, Preliminary characteriza tion of bacteriocin-like substances from Lactic acid bacteria isolated from organic leafy vegetables, LWT-Food Sci. Technol. 41: 432-441.

Allende, A., Martínez, B., Selma, V., Gil, M.I., Suárez, J.E. and Rodríguez, A., 2007, Growth and bacteriocin production by Lactic acid bacteria in vegetable broth and their effectiveness at reducing Listeria monocytogenes in vitro and in fresh-cut lettuce, Food Microbiol. 24: 759-766.

Ramos, B., Brandão, T.R.S., Teixeira, P. and Silva C.L.M., 2020, Biopreservation approaches to reduce Listeria monocytogenes in fresh vegetables, Food Microbiol. 85: 103282.

Ziegler, M., Kent, D., Stephan, R. and Guldimann, C., 2019, Growth potential of Listeria monocytogenes in twelve different types of RTE salads: Impact of food matrix, storage temperature and storage time, Int. J. Food Microbiol. 296: 83-92.

Truchado, P., Elsser-Gravesen, A., Maria, I. and Ana Allende, G., 2020, Post-process treatments are effective strategies to reduce Listeria monocytogenes on the surface of leafy greens: A pilot study, Int. J. Food Microbiol. 313: 108390.