ผลของโอซิลต่อการนำมาประยุกต์ใช้ในกระบวนการฟอกฆ่าเชื้อผิวชิ้นพืชของต้นกุหลาบหนู
Main Article Content
บทคัดย่อ
การเพาะเลี้ยงเนื้อเยื่อได้ถูกนำไปใช้ในการผลิตต้นกุหลาบหนู (Rosa chinensis Jacq.) เพื่อให้สามารถตอบสนองต่อความต้องการของตลาดไม้ประดับได้อย่างต่อเนื่อง อย่างไรก็ตาม การฟอกฆ่าเชื้อผิวชิ้นพืชเพื่อชักนำให้เกิดต้นพืชปลอดเชื้อในระบบเพาะเลี้ยงเนื้อเยื่อของพืชชนิดนี้ยังมีการศึกษาที่จำกัด ดังนั้น งานวิจัยนี้จึงมีวัตถุประสงค์เพื่อ 1) เปรียบเทียบประสิทธิภาพการฟอกฆ่าเชื้อผิวชิ้นส่วนพืชระหว่างไฮเตอร์ซึ่งเป็นสารฟอกขาวเกรดการค้า (สารออกฤทธิ์สำคัญต่อการกำจัดเชื้อจุลชีพ คือ โซเดียมไฮโปคลอไรท์) และโอซิลซึ่งเป็นสารเคมีทางการเกษตร (สารออกฤทธิ์สำคัญต่อการกำจัดเชื้อจุลชีพ คือ อนุภาคซิลเวอร์ระดับนาโนเมตร) โดยฟอกเปรียบเทียบกันที่ความเข้มข้น 15% (ปริมาตร/ปริมาตร) นาน 15 นาที และ2) ศึกษาความเข้มข้น (5%, 10%และ15% (ปริมาตร/ปริมาตร)) และระยะเวลา (10 และ 15 นาที) ที่เหมาะสมของการใช้สารละลายโอซิลต่อการฟอกฆ่าเชื้อผิวชิ้นพืช หลังจากส่วนกิ่งอ่อนของต้นกุหลาบหนูได้ผ่านกระบวนการฟอกฆ่าเชื้อผิวและถูกเลี้ยงในระบบเพาะเลี้ยงเนื้อเยื่อ พบว่าสารละลายไฮเตอร์ (83.33%) และสารละลายโอซิล (93.33%) ทำให้ชิ้นพืชมีอัตราการปลอดเชื้อในปริมาณที่ใกล้เคียงกัน แต่การรอดชีวิตของชิ้นส่วนพืชภายหลังขั้นตอนการฟอกฆ่าเชื้อผิวด้วยสารละลายโอซิล (100%) มีอัตราที่สูงกว่าสารละลายไฮเตอร์ (35.65%) งานวิจัยนี้พบว่าการใช้สารละลายโอซิล 15% (ปริมาตร/ปริมาตร) นาน 10 นาที เป็นวิธีการฟอกฆ่าเชื้อผิวส่วนกิ่งอ่อนของต้นกุหลาบหนูที่เหมาะสมที่สุด ผลการศึกษานี้จะช่วยปรับปรุงกระบวนการฟอกฆ่าเชื้อผิวชิ้นส่วนพืช อันจะทำให้การขยายพันธุ์ต้นกุหลาบหนูด้วยวิธีการเพาะเลี้ยงเนื้อเยื่อพืชมีประสิทธิภาพที่สูงขึ้นต่อไป
Article Details
เอกสารอ้างอิง
Tibkwang, A., Junkasiraporn, S. and Chotikadachanarong, K. 2018, Effects of cytokinnin and sucrose on tissue culture of Rosa chinensis Jacq.var.minima Voss. BUU. Sci. J, 23(2): 712-721. (in Thai)
Nikomtat, J., Pokeaw, S., Klinnoo, S., Raktham, R. and Faiyue, B. 2020. Tissue culture of Rosa chinensis Jacq. var. minima Voss. by simple plant Tissue culture media. Academic. J. Sci. Applied. Sci, 1: 29-39. (in Thai)
Ramasoot, S., Mahrea, N. and Bayor, A. 2017, Effect of silver nitrate on in vitro flowering induction and prolong duration of miniature Rose (Rosa chinensis Jacq). Wichchca. J, 36(1): 39-49.
Pongthai,P.and Pongswat,S.2010,Plant Tissue Culture and in vitro Flowering of Rosa chinensis Jacq.The3rd Rajamangala University of Technology Conference, 6 p.
Salehi, H. and Khish-Khui, M. 1996, Micropropagation of miniature rose cultivars. Iran. Agric. Res. 15: 51-67.
Chu, C.Y., Knight, S.L. and Smith, M.A.L. 1993, Effect of liquid culture on the growth and development of miniature rose (Rosa chinensis Jacq. ’Minima’). Plant CellTissue Organ Cult.32:329-334.
Hsia, C.N. and Korban, S.S. 1996, Factors affecting in vitro establishment and shoot proliferation of Rosa hybrida L.and Rosa chinensis minima. In Vitro Cell. Dev.Biol.-Plant. 32: 217-222.
Vaca-Suquillo, I. de los Ángeles, Acuña, J.A.A. and Cruz, M.V.P. 2022, Oxidation and contamination control inthein vitro establishment of Rosa chinensis. Stud. Environ. Anim. Sci, 3(3): 1479-1493.
de la Rosa Jr., Z.S. and Belarmino, M.M. 2007, In vitro culture of rose species (Rosa spp.) via axillary bud growth. Ann.Trop. Res, 29(1): 1-13.
Salehi, H. and Khish-Khui, M. 1997, A simple procedure for disinfection of ’Baby Masquerade’ miniature rose explants. Sci. Hortic. 68: 145-148.
Maurya,R.P.,Yadav,R.C., Godara, N.R.and Beniwal, V.S. 2013, In vitro plant regenerationof rose(Rosa hybridaL.) cv."Benjamin Paul" through various explants. J. Exp. Biol. Agric. Sci. 1: 111-119.
Shirdel, M., Motallebi-Azar, A.R., Matloob,M., Mokhtarzadeh, S. and Ozdemir. F.A. 2017, In vitro establishment procedures of Dog rose (Rosa canina). J. Appl. Biol. Sci. 11(2): 6-9.
Parzymies, M., Pudelska, K. and Poniewozik, M. 2019, The use of nano-silver for disinfection of Pennisetum alopecuroides plant material for tissue culture. Acta. Sci. Pol. Hortorum Cultus.18(3): 127-135.
Hashim, S.N., Ghazali, S.Z., Sidik, N.J., Chia-Chay,T. and Saleh, A.2021,Surface Sterilization Method for Reducing Contamination of Clinacanthus Nutans Nodal Explants Intended for In-Vitro Culture.The 1 st International Conference on Assessment and Development of Agricultural Innovation, 8 p.
Mahajan,S.,Kadam, J., Dhawal,P.,Barve, S. and Kakodkar, S. 2022, Application of silver nanoparticles in in-vitro plant growth and metabolite production: revisiting its scope and feasibility. Plant Cell Tissue Organ Cult, 150(1), 15-39.
Abdi, G. 2012, Evaluation the potential of nano silver for removal of bacterial contaminants in valerian (Valeriana officinalis L.) tissue culture. J. Bio. Env. Sci, 6(17): 199-205.
Fakhrfeshani, M., Bagheri, A. and Sharifi, A.2012, Disinfecting effects of nanosilver fluids in Gerbera (Gerbera jamesonii) capitulum tissue culture. J. Bio. Env. Sci,6(17): 121-127.
Gouran, A., Jirani, M., Mozafari, A.A.,Saba, M.K., Ghaderi, N. and Zaheri, S. 2014, Effect of Silver Nanoparticles on Grapevine Leaf Explants Sterilization at In Vitro Conditions.The 2nd National Conference on Nanotechnology from Theory to Application, 6 p.
Taghizadeh, M. and Solgi, M. 2014, The application of essential oils and silver nanoparticles for sterilization of bermudagrass explants in in vitro culture. Int. J. Hortic. Sci. Technol. 1(2): 131-140.
Shokri, S., Babaei, A., Ahmadian, M., Arab, M.M. and Hessami, S.2013.Theeffectsof different concentrations of nano-silveron elimination of bacterial contaminations and phenolic exudation of rose (Rosa hybrida L.) in vitro culture. Acta Hortic. 1083: 391-396.
Adebomojo, A.A.and Abdul-Rahaman, A.A. 2020, Surface Sterilization of Ocimum Seeds and Tissues With Biosynthesized Nanosilver and its Effects on Callus Induction. Nanotechnology Applicationsin Africa: Opportunities and Constraints,20 p.
Vatcharakajon, P., Sornsaket, A.,Choengpanya, K., Susawaengsup, C.,Sornsakdanuphap, J., Boonplod, N., Bhuyar,P.and Dangtungee,R. 2023,Silver nanochito oligomer hybrid solutionfor the treatmentof Citrus greening disease(CGD) and biostimulants in Citrus. Horticulture. 9(6): 725.
Choengpanya,K.,Susawaengsup,C.,Sornsakdanuphap, J., Dangtungee, R. and Siangsuepchart, A. 2024, Antifungal Property of Silver Nano-Chito Oligomer Hybrid Solution Against Canbendazim Resistan tFungus. Fusarium Solani.The 4 th National and The 2nd International MJU Phrae Conference,7 p.
Muiruri, S.N., Mweu, C.M. and Nyende, B.A. 2011, Micropropagation protocols using nodal explants of selected rose (Rosa hybrida) cultivars. Afr. J. Hort. Sci. 4: 60-65.
Murashige, T. and Skoog, F. 1962. A revised medium for rapid growthand bio assays with tobacco tissue cultures. Physiol. Plant. 15(3): 473-497.
Yadav, H., Banyal, N., Singh, M.K., Singh, K.P., Panwar, S., Singh, B., Kumar, S. and Mandal, B.N. 2023, Optimization of in vitro protocol for rapid mass multiplication of floribunda rose cv. ’Rose Sherbet’.AMA Agric. Meeh. Asia. Afr.Lat. AM.54(9):15781-15788.
Aung, K., Jiang, Y. and He, S.Y. 2018, The role of water in plant-microbe interactions. Plant J. 93(4): 771-780.
Fukuzaki,S.2006, Mechanisms of actions of sodium hypochlorite in cleaning and disinfection processes. Bio. Sci. 11(4):147-157.
Shields, H. J.,Traa, A.and VanRaamsdonk, J. M. 2021, Beneficial and detrimental effects of reactive oxygen species on lifespan: a comprehensive review of comparative and experimental studies. Front. Cell. Dev. Biol. 9: 181.
Estrela, C., Estrela, C.R., Barbin, E.L.,Spanó, J.C.E., Marchesan, M.A. and Pécora, J.D. 2002, Mechanism of action of sodium hypochlorite.Braz. Dent. J.13: 113-117.
Yildiz, M. 2012, The Prerequisite of the Success in Plant Tissue Culture: High FrequencyShootRegeneration, Available Source: https://www.intechopen.com/chapters/40187. August 27, 2024.
Karawak, P.K., Chiangnoon, R., Sriwiang, W., Meepean, P., Sritapanya, N., Thamrongsiripak, N., Yooyen, T. and Uttayarat, P. 2024, The release of silver nanoparticles and antibacterial properties of hydrogel sheet dressings. Thai. Sci. Technol. J, 32(5): 55-65. (in Thai)
Kim,S.W., Jung, J.H.,Lamsal,K.,Kim,Y.S., Min, J.S. and Lee, Y.S. 2012, Antifungal effects of silver nanoparticles (AgNPs) against various plant pathogenic fungi. Mycobiology. 40(1): 53-58.
Yin, I.X., Zhang, J., Zhao, I.S., Mei, M.L.,Li, Q. and Chu, C.H. 2020, The antibacterial mechanism of silver nanoparticles and its application in dentistry. Int. J. Nanomedicine, 15: 2555-2562.
Tung, H.T., Thuong, T.T., Cuong, D.M., Luan,V. Q., Hien,V.T., Hieu,T., Nam, N.B., Phuong, H.T.N, Vinh, B.V.T., Khai, H.D., Nhut, D.T., and Nhut, D.T. 2021. Silver nanoparticles improved explant disinfection, in vitro growth, runner formation and limited ethylene accumulation during micropropagation of strawberry (Fragaria × ananassa). Plant Cell Tissue Organ Cult, 145: 393-403.
Mishra, S.K., Ferreira, J.M.F. and Kannan,S.2015, Mechanically stable antimicrobial chitosan-PVA-silver nanocomposite coatings deposited ontitanium implants. Carbohydr. Polym. 121: 37-48.
Cuong, D.M., Mai, N.T.N.,Tung, H.T.,Khai,H.D., Luan, V.Q., Phong, T.H., Van The Vinh,B.,Phuong, H.T.N.,VanBinh, N. and Tan Nhut, D.2023,Positive effect of silver nanoparticles in micropropagation of Limonium sinuatum (L.) Mill.’White’. Plant CellTissue Organ Cult,155(2):417-432