Influence of Colchicine on the Growth of Native Andrographis Cultivars

Main Article Content

Suntaree Surson
Suphasit Sitthaphanit
Khumpanat Wongkerson

Abstract

Background and Objectives: The epidemic of coronavirus disease 2019 (COVID-19) causes an increased demand for Andrographis. Inducing polyploidy Andrographis is an alternative way to enhance the Andrographis yield. The aim of this study was to evaluate the effect of colchicine on the growth of Andrographis.


Methodology: Seeds of Andrographis were treated to induce polyploidy using five different colchicine concentrations (0.0, 0.1, 0.2, 0.3, and 0.4%) at two different exposure times (12 and 24 hours). The 5 × 2 factorial in a completely randomized design was used and then compared means among treatments using Duncan’s new multiple range test at a confidence interval of 95%.


Main Results: Germination rate of 1-month-old Andrographis plants had significant differences among treatments (P < 0.05). The highest germination rate of 12.25 ± 1.97% was found in T3 (0.1, 12), then T5 (0.2, 12) at 12.00 ± 0.61%. Increasing colchicine concentration up to 0.3 and 0.4% at 12 and 24 hours significantly caused a lower rate of germination (P < 0.05). At 3 months old of Andrographis plants, plant height, the number of leaves, and the number of nodes differed among treatments, with the highest values at 0.0% colchicine concentration. Moreover, the 4-month-old Andrographis plants had the highest number of nodes in T1 (0.0, 12) with 11.10 ± 1.40 nodes, the highest number of branches in T7 (0.3, 12) with 9.40 ± 2.32 branches, the highest number of leaves in T1 (0, 12) with 77.70 ± 25.06 leaves, and the widest leaf in T4 (0.1, 24) with 2.06 ± 0.23 cm. No significant differences in leaf length.


Conclusions: The discovered abnormal plants were mixoploidy chimera. Therefore, abnormal plants should be indicated when these trees are fully developed.

Article Details

Section
Research article

References

Aqafarini, A., M. Lotfi, M. Norouzi and G. Karimzadeh. 2019. Induction of tetraploidy in garden cress: morphological and cytological changes. Plant Cell Tiss. Organ Cult. 137: 627–635. https://doi.org/10.1007/s11240-019-01596-5.

Caperta, A.D., M. Delgado, F. Ressurreição, A. Meister, R.N. Jones, W. Viegas and A. Houben. 2006. Colchicine-induced polyploidization depends on tubulin polymerization in c-metaphase cells. Protoplasma. 227: 147–153. https://doi.org/10.1007/s00709-005-0137-z.

De Jesus-Gonzalez, L. and P.J. Weathers. 2003. Tetraploid Artemisia annua hairy roots produce more artemisinin than diploids. Plant Cell Rep. 21(8): 809–813. https://doi.org/10.1007/s00299-003-0587-8.

Dehghan, E., S.T. Hakkinen, K. Oksman-Caldentey and F.S. Ahmadi. 2012. Production of tropane alkaloids in diploid and tetraploid plants and in vitro hairy root cultures of Egyptian henbane (Hyoscyamus muticus L.). Plant Cell Tiss. Organ Cult. 110: 35–44. https://doi.org/10.1007/s11240-012-0127-8

Department of Agriculture. 2021. Handbook for Farmers: Paniculata Production. Department of Agriculture, Ministry of Agriculture and Cooperatives, Bangkok, Thailand. 42 pp. (in Thai)

Dhooghe, E., K. Van Laere, T. Eeckhaut, L. Leus and J. Van Huylenbroeck. 2011. Mitotic chromosome doubling of plant tissues in vitro. Plant Cell Tiss. Organ Cult. 104: 359–373. https://doi.org/10.1007/s11240-010-9786-5.

Fu, L., Y. Zhu, M. Li, C. Wang and H. Sun. 2019. Autopolyploid induction via somatic embryogenesis in Lilium distichum Nakai and Lilium cernuum Komar. Plant Cell Tiss. Organ Cult. 139: 237–248. https://doi.org/10.1007/s11240-019-01671-x.

Grouh, M.S.H., H. Meftahizade, N. Lotfi, V. Rahimi and B. Baniasadi. 2011. Doubling the chromosome number of Salvia hains using colchicine: evaluation of morphological traits of recovered plants. J. Med. Plant. Res. 5(19): 4892–4898. https://doi.org/10.5897/JMPR.9000459.

Kaensaksiri, T., P. Soontornchainaksaeng, N. Soonthornchareonnon and S. Prathanturarug. 2011. In vitro induction of polyploidy in Centella asiatica (L.) Urban. Plant Cell Tiss. Organ Cult. 107: 187–194. https://doi.org/10.1007/s11240-011-9969-8.

Kim, Y.S., E.J. Hahn, H.N. Murthy and K.Y. Paek. 2004. Effect of polyploidy induction on biomass and ginsenoside accumulations in adventitious roots of ginseng. J. Plant Biol. 47: 356–360. https://doi.org/10.1007/BF03030551.

Li, Q.Q., J. Zhang, J.H. Liu and B.Y. Yu. 2018. Morphological and chemical studies of artificial Andrographis paniculata polyploids. Chin. J. Nat. Med. 16(2): 81–89. https://doi.org/10.1016/s1875-5364(18)30033-5.

Liu, G., Z. Li and M. Bao. 2007. Colchicine-induced chromosome doubling in Platanus acerifolia and its effect on plant morphology. Euphytica. 157: 145–154. https://doi.org/10.1007/s10681-007-9406-6.

Maneerattanarungroj, P., C. Weruwanaruk and P. Maneerattanarungroj. 2016. Effect of colchicine on some morphological and anatomical characteristics of Homnil rice seedling (Oryza sativa L.), Landrace rice of Thailand. Koch Cha Sarn Journal of Science. 38(2): 72–78.

Ntuli, N.R. and A.M. Zobolo. 2008. Effect of water stress on growth of colchicine induced polyploid Coccinia palmate and Lagenaria sphaerica plants. Afr. J. Biotechnol. 7(20): 3648–3652.

Otto, S.P. and J. Whitton. 2000. Polyploid incidence and evolution. Annu. Rev. Genet. 34: 401–437. https://doi.org/10.1146/annurev.genet.34.1.401.

Sadat Noori, S.A., M. Norouzi, G. Karimzadeh, K. Shirkool and M. Niazian. 2017. Effect of colchicineinduced polyploidy on morphological characteristics and essential oil composition of ajowan (Trachyspermum ammi L.). Plant Cell Tiss. Organ Cult. 130: 543–551. https://doi.org/10.1007/s11240-017-1245-0.

Sattler, M.C., C.R. Carvalho and W.R. Clarindo. 2016. The polyploidy and its key role in plant breeding. Planta. 243(2): 281–296. https://doi.org/10.1007/s00425-015-2450-x.

Surson, S. 2018a. Polyploid induction in ‘kram phak troung’ indigo (Indigofera tinctoria L.). Knon Kaen Agr. J. 46(3): 439–448. (in Thai)

Surson, S. 2018b. Comparative of growth rate and morphology of ‘kram phak troung’ (Indigofera tentoria L.), between diploid and tetraploid plant. Khon Kean Agr. J. 46(3): 559–570. (in Thai)

Surson, S., S. Sitthaphanit and K. Wongkerson. 2021. Polyploidy induction of black sesame (Sesamum indicum L.) for yield component improvement. Songklanakarin J. Sci. Technol. 43(4): 1049–1055. https://doi.org/10.14456/sjst-psu.2021.138.

Surson, S., S. Sitthaphanit and N. Wongma. 2015. In vivo induction of tetraploid in tangerine citrus plants (Cirus reticulata Blanco) with the use of colchicine. Pak. J. Biol. Sci. 18(1): 37–41. https://doi.org/10.3923/pjbs.2015.37.41.

Surson, S., S. Sitthaphanit and N. Wongma. 2018. An investigation on polyploidy induction and verification of Kram Ngo plant (Indigofera suffruticosa) for biomass production in Northeast Thailand. Thai J. Agric. Sci. 51(1): 32–42.

Talei, D., M.K. Nekouei, M. Mardi and S. Kadkhodaei. 2020. Improving productivity of steviol glycosides in Stevia rebaudiana via induced polyploidy. J. Crop. Sci. Biotechnol. 23: 301–309. https://doi.org/10.1007/s12892-020-00038-5.

Technology Transfer and Development Bureau. 2021. Cultivation of Andrographis paniculata Herb. Agricultural Land Reform Office, Bangkok, Thailand. 12 pp. (in Thai)

Wang, Z., M. Wang, L. Liu and F. Meng. 2013. Physiological and proteomic responses of diploid and tetraploid black locust (Robinia pseudoacacia L.) subjected to salt stress. Int. J. Mol. Sci. 14(10): 20299–20325. https://doi.org/10.3390/ijms141020299.

Wongpiyasatid, A., P. Hormchan and N. Rattanadilok. 2003. Preliminary test of polyploidy induction in cotton (Gossypium arboreum) using colchicine treatment. Kasetsart J. (Nat. Sci.) 37: 27–32.

Xing, S.H., X.B. Guo, Q. Wang, Q.F. Pan, Y.S. Tian, P. Liu, J.Y. Zhao, G.F. Wang, X.F. Sun and K.X. Tang. 2011. Induction and flow cytometry identification of tetraploids from seed-derived explants through colchicine treatments in Catharanthus roseus (L.) G. Don. J. Biomed. Biotechnol. 2011: 793198. https://doi.org/10.1155/2011/793198.

Xu, C., T. Tang, R. Chen, C. Liang, X. Liu, C. Wu, Y. Yang, D. Yang and H. Wu. 2014. A comparative study of bioactive secondary metabolite production in diploid and tetraploid Echinacea purpurea (L.) Moench. Plant Cell Tiss. Organ Cult. 116: 323–332. https://doi.org/10.1007/s11240-013-0406-z.

Yan, Y.J., S.S. Qin, N.Z. Zhou, Y. Xie and Y. He. 2022. Effects of colchicine on polyploidy induction of Buddleja lindleyana seeds. Plant Cell Tiss. Organ Cult. 149: 735–745. https://doi.org/10.1007/s11240-022-02245-0.

Zhang, F., H. Xue, X. Lu, B. Zhang, F. Wang, Y. Ma and Z. Zhang. 2015. Autotetraploidization enhances drought stress tolerance in two apple cultivars. Trees. 29: 1773–1780. https://doi.org/10.1007/s00468-015-1258-4.

Zhu, Y., W. Tang, X. Tang, L. Wang, W. Li, Q. Zhang, M. Li, C. Fang, Y. Liu and S. Wang. 2021. Transcriptome analysis of colchicineinduced tetraploid Kiwifruit leaves with increased biomass and cell size. Plant Biotechnol. Rep. 15: 673–682. https://doi.org/10.1007/s11816-021-00704-2.