Release of plant nutrients and changes in the copies of N-cycling genes in response to soil amendment with rice straw and waste from a food seasoning industry
Keywords:
Decomposition, Food seasoning waste, N-cycling genes, Quantitative polymerase chain reaction, Rice strawAbstract
Rice-derived organic matter is an important source of nitrogen for paddy soils, and this limiting nutrient is subsequently redistributed throughout the paddy and moved up the food chain.
The effects were investigated of waste from a food seasoning industry (W0;1,875 L/ha and 3, 125 L/ha) and urea fertilizer (100 kg/ha) on the decomposition of rice straw and the subsequent release of nitrogen, phosphorus, potassium and silicon by soil microbial communities. Soil amended with W0 and urea fertilizer had a major impact on the decomposition of rice straw. However, biodegradation of rice straw did not result in large effects on the quantities of released organic matter, total nitrogen and available phosphorus, but it significantly (p < 0.05) affected the release of exchangeable potassium and available silicon. The abundance levels of 10 N-cycling genes (amoA-B, nxrA, nxrB, narG, nirS, nirK, cnorB, nosZ3, hdh and hzo) were also analyzed using quantitative polymerase chain reaction. In all treatments, the quantities of the nxrB, nirS, nirK and nosZ3 genes were greater than for the other genes over the 84d rice straw decomposition
period. Moreover, the quantities of the nirS and nirK genes were greater than those of nosZ3 and nxrB. Nitrogen was estimated to be lost from the soil through nitrite reduction in the form of NO. The application of W0 and urea fertilizer significantly (p < 0.05) increased the abundance of the nirS gene after the decomposition of rice straw over the 28d incubation period.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Kasetsart University
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
online 2452-316X print 2468-1458/Copyright © 2022. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/),
production and hosting by Kasetsart University of Research and Development Institute on behalf of Kasetsart University.