Application of flex sensors to control devices for helping the elderly

Authors

  • Rujipan Sampanna คณะวิศวกรรมศาสตร์ มหาวิทยาลัยกรุงเทพ จังหวัดปทุมธานี
  • Thaptawee Thongtemkeaw คณะวิศวกรรมศาสตร์ มหาวิทยาลัยกรุงเทพ จังหวัดปทุมธานี
  • Panchanit Hengsritawat โรงเรียนสตรีวิทยา ๒ จังหวัดกรุงเทพมหานคร
  • Termpong Srited คณะวิศวกรรมศาสตร์ มหาวิทยาลัยศรีปทุม จังหวัดกรุงเทพมหานคร

Keywords:

Microcontroller, Flex sensor, Elderly assistance devices

Abstract

Statistics of the elderly population in Thailand in 2021 are likely to increase rapidly and continuously, which has an increase in the characteristics of living alone in the household. Considering the ability to carry out daily activities, it was found that there were elderly people who were unable to help themselves. Including the elderly who can help and take care of themselves accounted for 1.3% and 1.8%, respectively. Therefore, to help the elderly to be self-reliant within the residence. This article focuses on implementing the invention by applying a flex sensors mounted on a finger to detect finger movements for controlling wheelchair, small robot and electrical equipment. By processing the signal with the Arduino R3 microcontroller from the flex sensor mounted on the finger. The test results for controlling the device with all 5 fingers are divided into 2 forms, which are control by moving one finger or moving a set of finger codes. Controlling a wheelchair from any event, this demonstrated accuracy with an average of 89.07% and 87.47% under different environment both indoor and outdoor, by order. Accuracy of controlling a small robot along with the control of turning on and off the lamp, accounting for 83.20% and 87.81%, respectively.

References

สำนักงานสถิติแห่งชาติ. (2564). การสำรวจประชากรสูงอายุในประเทศไทย พ.ศ. 2564. ค้นเมื่อ 28 มิถุนายน 2565.

http://www.nso.go.th/sites/2014en/Survey/social/domographic/OlderPersons/2021/fullreport_64.pdf

เทพทวี ทองเต็มแก้ว, รุจิพรรณ สัมปันณา และวิชชากร เฮงศรีธวัช. (2564). การควบคุมรถเข็นผู้พิการด้วยการเคลื่อนไหวนิ้วมือร่วมกับคลื่นไฟฟ้ากล้ามเนื้อ.ใน การประชุมวิชาการทางวิศวกรรมไฟฟ้า ครั้งที่ 44. 17-19 พฤศจิกายน 2564. มหาวิทยาลัยเทคโนโลยีราชมงคลพระนคร. น่าน. 736-739.

J. Andrés S.B., Mónica C.L., Miguel A.E., Olivia J.L.M., M. Andrea S.C. and José J.H.A. (2019). Design of a multifunctional electronic module adaptable to a motorized wheelchair for people with motor disabilities. In International Conference on Inclusive Technologies and Education. 30 October 2019 - 01 November 2019. San Jose del Cabo. Mexico. 201-2013.

Kollu J.L., Akshada M., A Venkata R. and Prakash K. (2020). Patient assistance using flex sensor. In International Conference on Communication and Signal Processing. 28-30 July 2020. Chennai. India. 00181-00185.

Krishnakumar S., Bethanney J.J., Sindu D., Aishwarya M.K., Sheryl R., Poojahsri S. and Prakash W.G. (2022). Designing of controlled wearable robot for the treatment of ankle injuries using flex sensors. In 5th International Conference on Multimedia, Signal Processing and Communication Technologies. 26-27 November 2022. Aligarh. India. 1-5.

R. Niranjana, M.A. Ibrahim, R. Ajay, V.B. Arunnachalam, R.S. Krishnan and K.L. Narayanan. (2022). Effectual gesture controlled smart wheelchair for the incapacitated. In 3rd International Conference on Smart Electronics and Communication. 20-22 October 2022. Trichy. India. 82-87.

Saifuddin M., Xiangxu L., Jong H.K., Hasib I., MD R.U.Z., Sakib R. and M Asifur R. (2019). A Multi-Modal human machine interface for iontrolling a smart wheelchair. In 7th Conference on Systems, Process and Control. 13-14 December 2019. Melaka. Malaysia. 10-13.

Shuo Z., Angus S. F., Ashraf F., Chunxu L. and Johann S. (2021). Development of a low-cost data glove using flex sensors for the robot hand teleoperation. In 3rd International Symposium on Robotics & Intelligent Manufacturing Technology. 24-26 September 2021. Changzhou. China. 47-51.

Xu C.Z., Yu Q.L., Ying Y. and Wen F.L. (2022). Motion control of a dexterous manipulator using data glove. In 8th International Conference on Mechanical Engineering and Automation Science. 14-16 October 2022. Wuhan. China. 138-142.

Zainab A., Taylor B., Matthew S., Ishfaq A., Manfred H. and Addison C. (2020). A Human-Computer interface for smart wheelchair control using forearm EMG signals. In 3rd International Conference on Data Intelligence and Security. 24-26 June 2020. South Padre Island. TX. USA. 34-39.

Published

2023-04-29 — Updated on 2024-02-19

Versions

How to Cite

Sampanna, R., Thongtemkeaw, T. ., Hengsritawat, P., & Srited, T. (2024). Application of flex sensors to control devices for helping the elderly. Agriculture & Technology RMUTI Journal, 4(1), 90–102. retrieved from https://li01.tci-thaijo.org/index.php/atj/article/view/257098 (Original work published April 29, 2023)