ผลของการควบคุมความขุ่นต่อการเจริญเติบโตและการรอดตายของลูกปลาดุกแอฟริกา
Main Article Content
บทคัดย่อ
การศึกษานี้มีจุดประสงค์เพื่อศึกษาผลของการควบคุมความขุ่นต่อการเจริญเติบโต การรอดตายของลูกปลา และศึกษาการเปลี่ยนแปลงคุณภาพน้ำตลอดช่วงอนุบาล การทดลองประกอบด้วย 5 การทดลอง การทดลองละ 3 ซ้ำ คือการทดลองที่ 1 เปลี่ยนถ่ายน้ำ 50 เปอร์เซ็นต์ ทุกวัน การทดลองที่ 2-4 เปลี่ยนถ่ายน้ำ 50 เปอร์เซ็นต์ เมื่อความขุ่นต่ำกว่า 22-23 เซนติเมตร (ไม่เกิน 80 NTU.), 13-14 เซนติเมตร (ไม่เกิน 120 NTU.), 8-9 เซนติเมตร (ไม่เกิน 160 NTU.) และการทดลองที่ 5 ไม่เปลี่ยนถ่ายน้ำตลอดช่วงการอนุบาล ตามลำดับ ลูกปลาทดลองมีอายุเริ่มต้น 21 วัน น้ำหนักเฉลี่ยเริ่มต้น 1.90 กรัม ความยาวเฉลี่ยเริ่มต้น 6.25 เซนติเมตร อนุบาลด้วยอาหารเม็ดสำเร็จรูปที่มีโปรตีน 35 เปอร์เซ็นต์ให้กินจนอิ่ม วันละ 3 ครั้ง ทดลองในถังพลาสติกสีดำความจุ 50 ลิตร ระดับน้ำ 45 เซนติเมตร ใส่ลูกปลาถังละ 50 ตัว ใช้เวลาทดลอง 30 วัน ผลการทดลองพบว่า การควบคุมความขุ่นให้มีค่าไม่ต่ำกว่า 13-14 เซนติเมตร (ไม่เกิน 120 NTU.) ตลอดช่วงการอนุบาล เป็นสภาวะที่เหมาะสมสำหรับอนุบาลลูกปลาชนิดนี้ สภาวะนี้เปลี่ยนถ่ายน้ำ 13 ครั้ง ใช้น้ำ 7.5 ลิตรต่อตัว ลูกปลามีน้ำหนักสุดท้าย 14.03±2.64 กรัมต่อตัว มีการเจริญเติบโต 0.41±0.09 กรัมต่อวัน และรอดตาย 92 เปอร์เซ็นต์ สภาวะนี้คุณภาพน้ำวันสุดท้าย มีค่าต่าง ๆ ดังนี้ ความเป็นกรด-ด่าง 7.87±0.42 อุณหภูมิน้ำ 27.35±0.07 องศาเซลเซียส ออกซิเจนละลายน้ำ 0.20±0.00-มิลลิกรัมต่อลิตร แอมโมเนียรวม 11.85±0.53 มิลลิกรัมต่อลิตร และความขุ่น 120.43±1.64 เอ็นทียู ตามลำดับ
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
กรมควบคุมมลพิษ. 2554. คู่มือการประเมินปริมาณน้ำทิ้งและปริมาณมลพิษจากกิจกรรมการเพาะเลี้ยงสัตว์น้ำ. กระทรวงทรัพยากรธรรมชาติและสิ่งแวดล้อม, กรุงเทพฯ.
กรมประมง. 2565. สถิติการประมงแห่งประเทศไทย พ.ศ. 2563. กองนโยบายและแผนพัฒนาการประมง, กระทรวงเกษตรและสหกรณ์, กรุงเทพฯ.
มั่นสิน ตัณฑุลเวศม์ และ ไพพรรณ พรประภา. 2544. การจัดการคุณภาพน้ำ และการบำบัดน้ำเสียในบ่อเลี้ยงปลาและสัตว์น้ำอื่น ๆ. (พิมพ์ครั้งที่ 4). สำนักพิมพ์มหาวิทยาลัยธรรมศาสตร์, กรุงเทพฯ
สำนักงานมาตรฐานสินค้าเกษตรและอาหารแห่งชาติ. 2561. การปฏิบัติทางการเพาะเลี้ยงสัตว์น้ำที่ดีสำหรับฟาร์มเพาะพันธุ์และอนุบาลสัตว์น้ำจืด มกษ. 7421 (G)-2561. กระทรวงเกษตรและสหกรณ์, กรุงเทพฯ.
APHA. 2005. Standard methord for the examination of water and wastewater. (21st ed.). American public health association, Washington D.C.
Barrett, J. C., G. Grossman. and R. Josenfeld. 1992. Turbidity-induced changes in reactive distance of rainbow trout. Trans. Am. Fish. Soc. 121: 437-443.
Bhatnagar, A. and P. Devi. 2013. Water quality guidelines for the management of pond fish culture. J. environ. sci. 3(6): 1980-2009.
Borok, A. 2014. Turbidity technical review. (6th ed.). Oregon department of environmental quality, Portland.
Boyd, C.E. 2001. Water quality standards. Glob. aquac advocate. 4: 42-44.
Buentello, J.A., D.M. Gatlin and W.H. Neill. 2000. Effects of water temperature and dissolved oxygen on daily feed consumption, feed utilization and growth of channel catfish (Ictalurus punctatus). Aquac. 182: 339-352.
Ehiagbonare, J.E. and Y.O.O. gundiran. 2010. Physico-chemical analysis of fish pond waters in Okada and its environmemts Nigeria Africa. J. biotechnol. 9 (36): 5922-5928.
Emokaro, C.O., P.A. Ekunwe and A. Achille. 2010. Profitability and viability of catfish farming in Kogi State Nigeria. Res. j. agric. biol. Sci. 6: 215-219.
FAO/NACA. 1995. Report on a reginal study and workshop on the environmental assessment and management of aquaculture devement. Regional office for Asia and The Pacific; Network of aquaculture centres in Asia-Pacific, Bangkok.
Lawson, T.B. 1995. Fundamentals of aquaculture engineering. Chapman and Hall, New York.
Lemarie, G., A. Dosdat, D. Coves, G. Dutto, E. Gasset and J.P. Ruyet. 2004. Effect of chronic ammonia exposure on growth of european seabass juveniles. Aquac. 229: 471-491.
Maclntyre, C.M., T. Ellis, B.P. North and J.F. Turbull. 2008. The Influences of water quality on the welfare of farmed rainbow trout, a review in fish welfare. Blackwell Publishing, Singapore.
Marietta, N.D. 1990. water management for rearing milkfish larvae. SEAFDEC Asian aquaculture. 12: 8-9.
Marimuthua, K., H. Palaniandya and Z.A. Muchlisin. 2019. Effect of different water pH on hatching and survival rates of African catfish Clarias gariepinus (Pisces: Clariidae). Aceh j. anim. sci. 4(2): 80-88.
O’Bryen, P.J. and C.S. Lee. 2007. Effect of diet food consumption growth and retention of protein and energy. Doctoral Dissertation, Auburn University Auburn, Alabama. 51 pp.
Okomoda, V.T., T.O., Lateef. and M. Iortim. 2016. The effect of water renewal on growth of Clarias gariepinus fingerling. Croat. j. fish. 74: 25-29.
Orji, R.C. and K.E. Esabi. 2006. Effects of water replacement frequency on the growth and survival of Heterobranchus Longifilis (valenciennnes, 1980) fingerlings reared. JAFS. 4(2): 109-114
Pichavant, K., J. Pearson-Le-Ruyet, N. Le BayonSevere, A. Le Roux and G. Beouf. 2001. Comparative effects of long-term hypoxia on growth feeding and oxygen consumption in juvenile turbot and European sea bass. J. fish. biol. 59: 875-883.
Pinto, W., C. Aragao, F. Soares, M.T. Dinis and L.E.C. Conceicao. 2007. Growth, stress response and free amino acid levels in Senegalese sole (Solea senegalensis, kaup 1858) chronically exposed to exogenous ammonia. Aquat. res. 38: 1198-1204.
Poli, M.A., R. Schveitzer and A.P.O. Nuner. 2015. The use of biofloc technology in a South american catfish (Rhamdia quelen) hatchery, effect of suspended solids in the performance of larvae. Aquac. eng. 66: 17-21.
Poon, W.L., C.Y. Hung and D.J. Randall. 2002. The effect of aquatic hypoxia on fish. Department of biology and chemistry. University of
Hongkong, Kowloon, Hongkong.
Prokesova, M., B. Drozd, J. Kouril, V. Stejskal and J. Matousek. 2015. Effect of water temperature on early life history of African sharp-tooth catfish Clarias gariepinus (burchell, 1822). J. appl. Ichthyol. 31: 18-29.
Salazar, L., E.V. Estrada and E.S. Velasques. 2006. Effect of the exposure to fasciola hepatica on life history traits of Lymnaea cousin. Exp. parasit. 144: 77-83.
Schram, E., J.A.C. Roques, W. Abbink, T. Spanings, P. de Vries, S.M. Bierman and J.W. van de Vis. 2010. The impact of elevated water ammonia concentration on physiology growth and feed intake of African catfish (Clarias gariepinus). Aquac. 306: 108-115.
Sweka, J.A. and K.J. Hartman. 2001. Effects of turbidity on prey consumption and growth in brook trout and implications for bioenergetics modeling. Can. j. fish. aquat. sci. 58: 386-393.
Toko, I., E.D. Fiogbe, B. Koukpode and P, Kestemont. 2006. Rearing of African catfish (Clarias gariepinus) and Vundu catfish (Heterobranchus longifilis) in traditional fish ponds (whedos) effect of stocking density on growth, production and body composition. Aquac. 262: 65-72.
Tucker, C.S., and .J.A. Hargreaves. 2004. Biology and culture of Channel catfish. Develop. aquac. fish. sci. 34: 68-72.
Van Weerd, J.H. 1995. Nutrition and growth in Clarias species, a review. Aquat living resour. 8(4): 395-401.
Viadero, R.C. 2005. Factors affecting fish growth and production. Water Encyclopedia. 3: 129-133.
Wajsbrot, N., A. Gasith, M.D. Krom and D.M. Popper. 1991. Acute toxicity of ammonia to juvenile gilthead seabream (Sparus aurata) under reduced oxygen levels. Aquac. 164: 227-288.
Wurts, W.A. and R.M. Durborow. 1992. Interactions of pH carbon dioxide alkalinity and hardness in fish ponds. SRAC Publication. Southern Regional Aquaculture Center.