การชักนำแคลลัสจากอับละอองเรณูของฟ้าทะลายโจรในสภาพปลอดเชื้อ

Main Article Content

จินทภา อ่วมอ่ำ
ปัทมา หาญนอก
สุเทพ วัชรเวชศฤงคาร
เทิดศักดิ์ โทณลักษณ์

บทคัดย่อ

        การศึกษาการชักนำให้เกิดแคลลัสจากอับละอองเรณูของฟ้าทะลายโจรจากแหล่งปลูกในพื้นที่จังหวัดปราจีนบุรีด้วยการเพาะเลี้ยงอับละอองเรณูในสภาพปลอดเชื้อ เมื่อศึกษาการพัฒนาของดอกเพื่อนำมาใช้เป็นชิ้นส่วนพืช พบว่าดอกที่มีการพัฒนาในระยะ tetrad อัตราสูงในช่วงอายุ 2-6 วัน หลังจากดอกปรากฏ ซึ่งเป็นระยะที่เหมาะสำหรับการเพาะเลี้ยงอับละอองเรณู เมื่อนำไปเพาะเลี้ยงในอาหารสูตร NLN ที่เติมสาร BAP ที่ระดับความเข้มข้น 0 0.1 0.5 และ 1.0 มิลลิกรัมต่อลิตร ร่วมกับ NAA ที่ระดับความเข้มข้น 0 0.1 และ 0.5 มิลลิกรัมต่อลิตร พบว่าอาหารสูตร NLN ที่เติม BAP ความเข้มข้น 1.0 มิลลิกรัมต่อลิตร ร่วมกับ NAA ความเข้มข้น 0.5 มิลลิกรัมต่อลิตรเป็นเวลา 8 สัปดาห์ มีการชักนำให้เกิดแคลลัสสูงสุด และเมื่อนำอับละอองเรณูมาเพิ่มปริมาณแคล ลัสด้วยการบ่มที่อุณหภูมิต่ำ 4 องศาเซลเซียส เป็นเวลา 1 และ 3 วัน ต่อเนื่องด้วยการบ่มที่อุณหภูมิ 28 30 และ 32 องศาเซลเซียส เป็นเวลา 1 2 3 และ 4 วัน พบว่าการบ่มที่อุณหภูมิต่ำ 4 องศาเซลเซียส 1 วัน ร่วมกับการบ่มที่อุณหภูมิ 28 องศาเซลเซียส เป็นเวลา 1 วัน สามารถเพิ่มปริมาณการชักนำและน้ำหนักแคลลัสของฟ้าทะลายโจรได้สูงที่สุด

Article Details

บท
บทความวิจัย

References

ชุติมา แก้วพิบูลย์ และณวงศ์ บุนนาค. 2563. ผลของสารควบคุมการเจริญต่อการผลิตสารกลุ่มไดเทอร์พีนแลคโตน จากแคลลัสฟ้าทะลายโจร. วารสารวิทยาศาสตร์และเทคโนโลยี 28(10): 1976-1801.

พันทิพา ลิ้มสงวน สนธิชัย จันทร์เปรม และเสริมศิริ จันทร์เปรม. 2560. การชักนำให้เกิดแคลลัสและต้นอ่อนจากกลีบดอกที่พัฒนาแล้วของเบญจมาศ. วารสารวิทยาศาสตร์เกษตร 48(3): 322-333.

สมาพร เรืองสังข์ นนทวัฒน์ หุ้มแพร และจิรวัฒน์ เรืองเนตร. 2560. ระยะพัฒนาการของไมโครสปอร์ในลิลลี่สายพันธุ์ฟอร์โมลองโก้ ที่มีขนาดตาดอกแตกต่างกัน. PSRU Journal of Science and Technology 5(1): 23-30.

Afele, J.C., L.W. Kannenberg, R. Keats, S. Sohota and E.B. Swanson. 1992. Increased induction of microspore embryos following manipulation of donor plant environment and culture temperature in corn (Zea mays L.). Plant cell, tissue and organ culture 28: 87-90 Available: DOI: https://doi.org/10.1007/BF00039919.

Ahmadi, B., M.E. Shariatpanahi, R. Asghari-Zakaria, N. Zare and P. Azadi. 2015. Efficient microspore embryogenesis induction in tomato (Lycopersicon esculentum Mill.) using shed microspore culture. J Pure Appl Microbiol 9(2): 21-29. Available: DOI:10.13140/RG.2.1.3265.8805.

Bajaj, Y.S. 1990. In vitro production of haploids and their use in cell genetics and plant breeding. Biotechnology in Agriculture and Forestry. 12: 3-44. Available: DOI:10.1007/978-3-642-61499-6_1.

Custers J.B.M. 2003. Microspore culture in rapeseed (Brassica napus L.) Biology, Agricultural and Food Sciences: 185-193. Available: DOI:10.1007/978-94-017-1293-4_29.

Gahan, P.B. and E.F. George. 2008. Adventitious regeneration, In George, E.F., M.A. Halls and G.D. Klerk eds. Plant Propagation by Tissue Culture: Volume 1. The Springer, Netherlands.

Hadziabdic, D., P.A. Wadl and S.M. Reed. 2011. Haploid cultures.Plant. CRC Press, American.

Jia, Y., Q.X. Zhang, H.T. Pan, S.Q. Wang, Q.L. Liu and L.X. Sun. 2014. Callus induction and haploid plant regeneration from baby primrose (Primula forbesii Franch.) anther culture. Scientia Horticulturae 176: 273-281. Available: https://doi.org/10.1016/j.scienta.2014.07.018.

Kim, M., I.C. Jang, J.A. Kim, E.J. Park, M. Yoon and Y. Lee. 2008. Embryogenesis and plant regeneration of hot pepper (Capsicum annuum L.) through isolated microspore culture. Plant cell reports 27: 425-434. Available: https://doi.org/10.1007/s00299-007-0442-4.

Kozak, K., R. Galek, M.T. Waheed and E. Sawicka- Sienkiewicz. 2012. Anther culture of Lupinus angustifolius: callus formation and the development of multicellular and embryolike structures Plant Growth Regulation 66: 145-153. Available: https://doi.org/10.1007/s10725-011-9638-2.

Lee, Y.S., Y.H. Kim and S.B. Kim. 2005. Changes in the respiration, growth, and vitamin C content of soybean sprouts in response to chitosan of different molecular weights. HortScience 40(5): 1333-1335. Available: DOI: https://doi.org/10.21273/HORTSCI.40.5.1333

Lichter, R. 1982. Induction of haploid plants from isolated pollens of Brassica napus. Zeitschrift für Pflanzenphysiologie 105(5): 427-34. Available: https://doi.org/10.1016/S0044-328X(82)80040-8.

Maison, T., H. Volkaert, U. Boonprakob and Y. Paisooksantivatana. 2005. Genetic Diversity of Andrographis paniculata Wall. ex Nees as Revealed by Morphological Characters and Molecular Markers. Kasetsart Journal of Social Sciences 39(3): 388-399.

Maharani, A., W.I.D. Fanata, F.N. Laeli, K.M. Kim and T. Handoyo. 2020. Callus induction and regeneration from anther cultures of indonesian indica black rice cultivar Journal of Crop Science and Biotechnology 23: 21-28. Available: https://doi.org/10.1007/s12892-019-0322-0.

Mohajer, S., R.M. Taha, A. Khorasani and J.S. Yaacob. 2012. Induction of different types of callus and somatic embryogenesis in various explants of Sainfoin (‘Onobrychis sativa’ Australian Journal of Crop Science 6(8): 1305-1313.

Raina, S.K. and S.T. Irfan. 1998. High-frequency embryogenesis and plantlet regeneration from isolated microspores of indica rice. Plant Cell Reports 17(9): 57-962. Available: https://doi.org/10.1007/s002990050517.

Redway, F.A., V. Vasil, D. Lu and I.K. Vasil. 1990. Identification of callus types for long-term maintenance and regeneration from commercial cultivars of wheat (Triticum aestivum L.). Theoretical and Applied Genetics 79: 609-617. Available: https://doi.org/10.1007/BF00226873.

Roy, S.K. and K. Datta. 1988. Chromosomal biotypes of Andrographis paniculata in India and Bangladesh. Cytologia 53(2): 369-378. Available: https://doi.org/10.1508/cytologia.53.369.

Sabu, K. 2002. Intraspecific variations in Andrographis paniculata Nees. PhD Thesis, Kerala university, Thiruvananthapuram, India.

Seguí-Simarro, J.M. and F. Nuez. 2008. How microspores transform into haploid embryos: changes associated with embryogenesis induction and microspore-derived embryogenesis. Physiol. Physiologia Plantarum 134(1): 1-12. Available: https://doi.org/10.1111/j.1399-3054.2008.01113.x.

Silveira, V., A.M. de Vita, A.F. Macedo, M.F.R. Dias, E.I.S. Floh and C. Santa-Catarina. 2013. Morphological and polyamine content changes in embryogenic and nonembryogenic callus of sugarcane. Plant Cell, Tissue and Organ Culture 114: 351-364. Available: https://doi.org/10.1007/s11240-013-0330-2.

Smykalova, I., M. Vetrovcova, M.V. Klima, I. Machackova and M. Griga. 2006. Efficiency of microspore culture for doubled haploid production in the breeding project “Czech Winter Rape”. Czech Journal of Genetics and plant breeding 42(2): 58-71. Available: DOI: 10.17221/3655-CJGPB.

Touraev A, A. Ilham, O. Vicente and E. Heberle-Bors. 1996. Stress induced microspore embryogenesis in tobacco: an optimized system for molecular studies. Plant Cell Reports 15: 561–565 Available: https://doi.org/10.1007/BF00232453.

Valdiani, A., M.A. Kadir, S.G. Tan, D. Talei, M.P. DAbdullah and S. Nikzad. 2012. Nain-e Havandi Andrographis paniculata present yesterday, absent today: a plenary review on underutilized herb of Iran’s pharmaceutical plants. Molecular biology reports 39: 5409- 5424. Available: https://doi.org/10.1007/s11033-011-1341-x.

Wilken, D., E. Jiménez González, A. Hohe, M. Jordan, R. Gomez Kosky, G. Schmeda Hirschmann and A. Gerth. 2005. Comparison of secondary plant metabolite production in cell suspension, callus culture and temporary immersion system. In Liquid culture systems for in vitro plant propagation. Springer. Dordrecht: 525-537. Available: https://doi.org/10.1007/1-4020-3200-5_39

Winarto, B. and J.A. Teixeira da Silva. 2011. Microspore culture protocol for Indonesian Brassica oleracea. Plant Cell, Tissue and Organ Culture (PCTOC) 107: 305-315. Available: https://doi.org/10.1007/s11240-011-9981-z.

Yan, G., H. Liu, H. Wang, Z. Lu, Y. Wang, D. Mullan and C. Liu. 2017. Accelerated generation of selfed pure line plants for gene identification and crop breeding. Frontiers in plant science 8: 1786. Available: https://doi.org/10.3389/fpls.2017.01786.