In vitro Callus Formation and Shoot Induction of Japanese Purple Sweet Potato (Ipomoea batatas (L.) Lam)

Main Article Content

Yaowaphan Sontikun
Sukonta Masoosuk
Wigunda Rattanapun
Theera Srisawat
Nittaya Ummarat
Suraphon Thitithanakul

Abstract

     Recently, interest in Japanese purple sweet potato (Ipomoea batatas) production has increased dramatically due to their flavor and nutritional content with high vitamin, anthocyanin, and sugar content. However, major production constraints are the quality and cost of planting material. Therefore, the present study used micropropagation techniques to determine the optimal medium formulation for callus induction and shoot multiplication of Japanese purple sweet potato. The experiment design was used Completely randomized design (CRD). Callus induction of leaf discs and tuber explants were cultured on MS medium containing 1.0 and 2.0 mg/L BA in combination with 0.1  1.5 or 1.0 mg/L NAA, and MS without plant growth regulators was used as a control. The explants were cultured for 5 weeks. For shoot induction experiment, explant derived from nodes were cultured on MS medium containing 0  0.25  0.5  1.0  1.5 and 2.0 mg/L BA for 5 weeks. The results showed that 100% callus induction occurred in tuber explants when cultured on MS medium containing
1.0 mg/L BA and 1.0 mg/L NAA, with the highest callus diameter of 1.51 cm. For leaf discs cultured on MS medium containing 2.0 mg/L BA and 0.1 mg/L NAA, 100% callus induction with callus diameters of 1.33 cm was shown. The highest shoot length (2.66 cm) was observed in nodal explants cultured on growth regulator-free MS medium at 5 weeks and 80 % shoot induction was observed. These results provide valuable insights for developing efficient micropropagation protocols for Japanese purple sweet potato in Thailand, contributing to a more sustainable and high-quality production system.

Article Details

How to Cite
Sontikun, Y., Masoosuk, S., Rattanapun, W., Srisawat, T., Ummarat , N., & Thitithanakul, S. (2026). In vitro Callus Formation and Shoot Induction of Japanese Purple Sweet Potato (Ipomoea batatas (L.) Lam). Maejo Journal of Agricultural Production, 8(1), 123–135. https://doi.org/10.14456/mjap.2026.11
Section
Research Article

References

Afshari, R. T., R. Angoshtari and S. Kakantari. 2011. Effects of light and different plant growth regulators on induction of callus growth in rapeseed (Brassica napus L.) genotypes. Plant Omics Journal 4(2): 60-67.

Alula, K., H. Zeleke and M. Manikandan. 2018. In vitro propagation of sweet potato (Ipomoea batatas (L.) Lam) through apical meristem culture. Journal of Pharmacognosy and Phytochemistry 7(1): 2386-2392.

Benjamin, E. D., G. A. Ishaku, F. A. Peingurta and A. S. Afolabi. 2019.Callus culture for the production of therapeutic compounds. American Journal of Plant Biology 4(4): 76-84.

Beyene, B., T. Menamo and G. Haile. 2020. Protocol optimization for in vitro propagation of Kulfo, orange flesh sweet potato (Ipomoea batatas) variety using shoot tip culture. African Journal of Plant Science 14(10): 395-401.

Cai, Z., L. Song, B. Qian, W. Xu, J. Ren, P. Jing and I. Oey. 2018. Understanding the effect of anthocyanins extracted from purple sweet potatoes on alcohol-induced liver injury in mice. Food Chemistry 245: 463-470.

Chanchula, N. and P. Pimonrat. 2020. Influence of BA and duration times of feeding in temporary immersion bioreactor on micropropagation of Alocasia sanderiana Bull. in vitro. Thai Journal of Science and Technology 9(5): 642-649.

Chen, H., J. Sun, J. Liu, Y. Gou, X. Zhang, X. Wu, R. Sun, S. Tang, J. Kan, C. Qian, N. Zhang and C. Jin. 2019. Structural characterization and anti-inflammatory activity of alkali-soluble polysaccharides from purple sweet potato. International Journal of Biological Macromolecules 131: 484-494.

Dewir, Y. H., A. A. Aldubai, M. M. Kher, A. A. Alsadon, S. El-Hendawy and N. A. AI-Suhaibani. 2020. Optimization of media formulation for axillary shoot multiplication of the red-peeled sweet potato (Ipomoea batatas [L.] Lam.) 'Abees’. Chilean Journal of Agricultural Research 80(1): 3-11.

El-Afifi, S. T., M. M. Zaghloul, W. A. El Saady and S. Fatma Mosaad. 2012. Using tissue culture technique in micropropagation of sweet potato (ipomoea batatas). Journal of Plant Production 3(7): 2201 -2209.

Fadaladeen, L. H., R. S. Toma, A. A. Saheen and H.B. Ahmed. 2022. A rapid micropropagation protocol for sweet potato (Ipomoea batatas L.) via tissue culture technique. Diyala Agricultural Sciences Journal 14(1): 31-39.

Food and Agriculture Organization of the United Nations (FAO).2019.Moving forward on food loss and waste reduction. The State of Food and Agriculture. Available: https://www.fao.org/3/ca6030en/ca6030en.pdf (October 27, 2024).

George, E. F. and P. D. Sherrington. 1984. Plant propagation by tissue culture: handbook and directory of commercial laboratories, Exegetics, Ltd., London.

Getu, T. and T. Feyissa. 2012. In vitro regeneration of sweet potato (Ipomoea batatas (L.) Lam.) Convolvulaceae, from leaf and petiole explants. Ethiopian Journal of Biological Sciences 11(2): 147-162.

Harada, K., M. Kano, T. Takayanagi, O. Yamakawa and F. Ishikawa. 2004. Absorption of acylated anthocyanins in rats and humans after ingesting an extract of Ipomoea batatas purple sweet potato tuber. Bioscience, Biotechnology and Biochemistry 68(7): 1500-1507.

Jang, H. H., H. W. Kim, S. Y. Kim, S. M. Kim, J. B. Kim and Y. M. Lee. 2019. In vitro and in vivo hypoglycemic effects of cyaniding 3-caffeoyl-phydroxybenzoylsophoroside-5-glucoside, an anthocyanin isolated from purple-fleshed sweet potato. Food Chemistry 272: 688-693.

Kamal, M. M., M. H. Rahman and M. S. Haque. 2013. Effect of growth regulator on regeneration of sweet potato (Ipomoea batatas L.). Journal of Environmental Science and Natural Resources 6(2): 197-200.

Kano, M., T. Takayanagi, K. Harada, K. Makino and F. Ishikawa. 2005. Antioxidative activity of anthocyanins from purple sweet potato, Ipomoea batatas cultivar Ayamurasaki. Bioscience, Biotechnology, and Biochemistry 69(5): 979-988.

Kumalaningsih, S. 2006. Natural antioxidants: Free radicals. Trubus Agrisana., Surabaya. [in Indonesia]

Mbinda, W., S. Anami, O. Ombori, C. Dixelius and R. Oduor. 2016. Efficient plant regeneration of selected kenyan sweet potato (Ipomoea batatas (L.) Lam.) cultivars through somatic embryogenesis. Journal of Tissue Science and Engineering 7(2): 1-6.

Mok, D. W.S. and M.C. Mok. 1994. Cytokinins: Chemistry, activity and functions. CRC Press. Inc., Florida. p. 129-137.

Nokam, N., P. Yusuk and N. Boonmala. 2016. Participatory research trial technology of royal project in vegetables production on highland area. Final report. Highland Research and Development Institute (Public Organization), Chiang Mai. [in Thai]

Nokam, N., P. Yusuk, N. Boonmala, C. Kabbua and N. Kamnu. 2023. The evaluation of suitable varieties and planting technology of sweet potato on highland. Final report. Highland Research and Development Institute (Public Organization), Chiang Mai. [in Thai]

Salah, E. M., M. A. Eissa and F. A. El-Feky. 2024. In vitro calli developing and characterizing from sweet potato (Ipomoea batatas) to maximize secondary metabolites production. Al-Azhar Journal of Agricultural Research 49(1): 149-155.

Sukamto, L. A., M. Mujiono, D. Djukri and V. Henuhili. 2011. Shoot tip culture of Nepenthes albomarginata Lobb ex Lindl. in vitro. Journal Biologi Indonesia, 7(2): 251-261.

Sunaryo, W., D. Darnaningsih and N. Nurhasanah. 2019. Selection and regeneration of purple sweet potato calli against drought stress simulated by polyethylene glycol. F1000Research 8: 1-10.

Taha, A. J. 2016. Callus induction and plant regeneration of Cordia myxa L. via tissue culture system. International Journal of Pharmacy and Integrated Life Sciences 4(5): 18-29.

Tang, C., J. Sun, J. Liu, C. Jin, X. Wu, X. Zhang, H. Chen, Y. Gou, J. Kan, C. Qian and N. Zhang. 2019. Immune enhancing effects of polysaccharides from purple sweet potato. International Journal of Biological Macromolecules 123: 923-930.

Thao, N. T. P., I. Miyajima, K. Ureshino, Y. Ozak and H. Okubo. 2003. Micropropagation of ornamental Alocasia, Journal of the Faculty of Agriculture, Kyushu University 47(2): 277-282.

Wang, L., Y. Zhao, Q. Zhou, C. L. Luo, A. P. Deng, Z. C. Zhang and J. L. Zhang. 2017. Characterization and hepatoprotective activity of anthocyanins from purple sweet potato (Ipomoea batatas L. cultivar Eshu No. 8). Journal of Food and Drug Analysis 25(3): 607-618.

Werner, T. and T. Schmülling. 2009. Cytokinin action in plant development. Current opinion in plant biology, 12(5): 527-538.

Wu, Q., H. Qu, J. Jia, C. Kuang, Y. Wen, H. Yan and Z. Gui. 2015. Characterization, antioxidant and antitumor activities of polysaccharides from purple sweet potato. Carbohydrate Polymers 132: 31-40.

Yoshimoto, M., S. Okuno, M. Yamaguchi and O. Yamakawa. 2001. Antimutagenicity of deacylated anthocyanins in purple-fleshed sweet potato. Bioscience, Biotechnology and Biochemistry 65(7): 1652-1655.

Zhuang, J., J. Lu, X. Wang, X. Wang, W. Hu, F. Hong, X. X. Zhao and Y. L. Zheng. 2019. Purple sweet potato color protects against high-fat diet-induced cognitive deficits through AMPK-mediated autophagy in mouse hippocampus. The Journal of Nutritional Biochemistry 65: 35-45.