Angular Displacement Angular Velocity and Tension Force of Particle in the Pendulum Motion under drag Force and Time-Dependent External Force

Main Article Content

Artit Hutem

Abstract

This research aimed to study for time-dependent angular displacement angular velocity and tension force of particle mass mk in the pendulum motion under air-resistance force and time-dependent external force 2 type. We can use the time-dependent external force 2 type in calculate the time-dependent angular displacement angular velocity and tension force of particle mass mk in the pendulum motion. The time-dependent external force 2 type is f0sin(wfat) and f0sin2(wfat). This research, we can use Newton's law of motion to calculate the time-dependent angular displacement and the time-dependent angular velocity and the time-dependent tension force in polar coordinate. We can use the method of solving inhomogeneous second order differential equations by the parameter variation method. The work in this research compares the time-dependent angular displacement, the time-dependent angular velocity and the tension force that depends on two external forces. Research results: A pendulum motion subjected to an external force of type f0sin2(wfat) will cause the time-dependent angular displacement, the time-dependent angular velocity and the tension force in the string oscillates more up and down overall than a pendulum motion subjected to an external force, type f0sin(wfat).

Article Details

How to Cite
Hutem, A. (2024). Angular Displacement Angular Velocity and Tension Force of Particle in the Pendulum Motion under drag Force and Time-Dependent External Force. Journal of Science and Technology CRRU, 3(1), 48–65. Retrieved from https://li01.tci-thaijo.org/index.php/jstcrru/article/view/262164
Section
Research article

References

วุทธิพันธุ์ ปรัชญพฤทธิ์, และสุวรรณ คูสำราญ. (2552). กลศาสตร์ (น. 64-173). โครงการตำราวิทยาศาสตร์และคณิตศาสตร์มูลนิธิ สอวน.:มูลนิธิส่งเสริมโอลิมปิกวิชาการและพัฒนามาตรฐานวิทยาศาสตร์ศึกษา.

Riley, K.F., & Hobson, M.P. (2006). Mathematical Methods for Physics and Engineering (3th ed.). New York: Cambridge University Press.

Atamp, A. (1990). Introduction to classical mechanics (pp.336-340). Prentice-Hall, United States America.

Goldstein, P.S. (2002). Classical Mechanics (3th ed., pp. 265-271). Prentice-Hall, United States America.

Murray, R.S., & John, L. (1999). Mathematical Handbook of Formulas and Tables (2rd ed., pp. 46-97). New York: Mcgraw-hill New York.

Coulton, P., & Foote, R. (2009). The dynamics of pendulums on surfaces of constant Curvature. Math. Phys. Anal. Geom. 12, 97–107.

Rafał, K. (2014). Movement of Double Mathematical Pendulum with Variable Mass. Machine Dynamics Research, 38, 47–58.

Pouya, J.l., Patrick, K., MohammadHady, M., & William, W. (2014). Computational aerodynamics of baseball, soccer ball and Volleyball. American Journal of Sports Science, 2(5), 115-121.

Rafał, K. (2016). Dynamic analysis of double pendulum with variable mass and initial velocities: The 20th International Conference: Machine Modeling and Simulations, MMS 2015. Procedia Engineering, 136, 175 – 180.

Gitterman, M. (2010). Spring pendulum: Parametric excitation vs an external force. Physica A, 389, 3101–3108.

Quiroga, G.D., & Ospina-Henao, P.A. (2017). Dynamics of damped oscillations: physical pendulum [J]. Euro. J. Phys., 38(6), 065005.

Jin, W., & et.al. (2022). Dynamic analysis of simple pendulum model under variable damping. Alexandria Engineering Journal, 61, 10563–10575.

Hutem, A. (2023). Calculation of the time-dependent velocity and displacement of particle move under time-dependent external force of damping oscillation. Journal of Science and Technology CRRU, 2(1), 1-7.

Wanaek, A., & Hutem, A. (2023). Calculation of Time-dependent Angular Displacement Angular Velocity and Tension Force of Particle in the Pendulum Motion under Air Resistance Force and Cosine External Force. Journal of Earth Science Astronomy and Space, 6(1), 14-28.

Changkham, J., Moonsri, P., & Hutem, A. (2023). MODELLING THE PROJECTILE MOTION UNDER A TIME – DEPENDENT EXTERNAL FORCE. VRU Research and Development Journal Science and Technology, 17(2), 45-59.

Kuaykaew, S., Kerdmee, S., Banyenugam, P., Moonsr,i P., & Hutem, A. (2016). The Analytical Description of Projectile Motion of Cricket Ball in a Linear Resisting Medium the Storm Force. Applied Mechanics and Materials, 855, 188-191.