A study on quality and sensory attributes of fresh sugarcane juice

Main Article Content

Theerarat Chinnasaen
Parkpoom Thinkum
Sangduan Chanachai
Piyarat Jungpol

Abstract

Fresh sugarcane juice is a well-renowned beverage for Thais for long time; however, the acceptance of it may be a limitation. Hence, the aims of this study are to evaluate the quality and sensory attributes of fresh sugarcane juice, 2 varieties (SP50 and SR1) and 2 promising clones (UTj10-3 and UTj10-19) with storage in the glass bottles for 0, 2, and 4 days at 4 ºC. The results show that the various varieties/promising clones and storage times have had an effect on the quality and sensory attributes of fresh sugarcane juice, as demonstrated by the greenness (-a* value) and the blueness (-b* value) being highly significant and the lowest value are presented in SR1 as -2.750 and in SP50 as -1.371, correspondingly. Moreover, the greenness tends to lower when the storage time was longer. The highest total soluble solid (TSS), pH, and electrical conductivity (EC) are shown in UTj10-3 as 21.43 ºBrix, SR1 as 5.51, and UTj10-19 as 4.114 mS/cm, correspondingly. Nevertheless, the storage times also are highly significant in EC and sedimentation. For sensory attributes, the consumers rate the accepted sensory evaluation score of UTj10-3 close to SP50, which is the highest accepted score when compared to others of the same storage time.

Article Details

How to Cite
Chinnasaen, T., Thinkum, P., Chanachai, S., & Jungpol, P. (2022). A study on quality and sensory attributes of fresh sugarcane juice. Prawarun Agricultural Journal, 19(2), 150–158. https://doi.org/10.14456/paj.2022.31
Section
Research Articles

References

Aziz, N., Mat Nor, N. A., Mohd Adnan, A. F., Taha, R. M., & Arof, A. K. (2012). Study of anthocyanin stability derived from the fruit pulp of Melastoma malabathricum in a coating system. Pigment and Resin Technology, 41(4), 223–229. doi: http://doi.10.1108/03699421211242455.

Eghbaliferiz, S., & Iranshahi, M. (2016). Prooxidant activity of polyphenols, flavonoids, anthocyanins and carotenoids: updated review of mechanisms and catalyzing metals. Phytotherapy Research, 30(9), 1379-1391.

Hunter, R. S., & Harold, R. W. (1987). The measurement of appearance (2nd ed.). New York: John Wiley-Inter science.

Kasunmala, I. G. G., Navaratne, S. B., & Wickramasinghe, I. (2020) Antioxidant activity and physicochemical properties changes of Melastoma malabathricum (L.) and Syzygium caryophyllatum (L.) fruit during ripening. International Journal of Fruit Science, 20(Suppl. 3), S1819-S1828. doi: 10.1080/15538362.2020.1834896.

Kropf, D. H. (2003). Enhancing meat color stability. Proceedings of the 56th American meat science association reciprocal meat conference (pp. 73-75). Columbia: Missouri.

Krzywicki, K. (1979). Assessment of relative content of myoglobin, oxymyoglobin and metmyoglobin at the surface of beef. Meat Science, 3(1), 1-10. doi: 10.1016/0309-1740(79)90019-6.

Lindahl, G., Lundstrom, K., & Tornberg, E. (2001). Contribution of pigment content, myoglobin forms and internal reflectance to the colour of pork loin and ham from pure breed pigs. Meat Science, 59(2), 141–151. doi: 10.1016/s0309-1740(01)00064-x.

Mancini, R. A., & Hunt, M. C. (2005). Current research in meat color. Meat science, 71(1), 100–121. doi: 10.1016/j.meatsci.

03.003.

Monino, I., Martínez, C., Sotomayor, J. A., Lafuente, A., & Jordán, M. J. (2008). Polyphenolic transmission to Segureno lamb meat from ewes’diet supplemented with the distillate from rosemary (Rosmarinus officinalis) leaves. Journal of Agricultural and Food Chemistry, 56(9), 3363-3367.

Morrissey, P. A., Sheehy, P. J., Galvin, K., Kerry, J. P., & Buckley, D. J. (1998). Lipid stability in meat and meat products. Meat Science, 49 (Suppl. 1), S73-S86.

Omar, S. N. C., Abdullah, J. O., Khairoji, K. A., Chin, S. C., & Hamid, M. (2013). Effects of flower and fruit extracts of Melastoma malabathricum Linn. on growth of pathogenic bacteria: Listeria monocytogenes, Staphylococcus aureus, Escherichia coli, and Salmonella typhimurium. Evidence-Based Complementary and Alternative Medicine, 2013(2):459089. doi: 10.1155/2013/459089.

Omar, S. N. C., Abdullah, J. O., Khairoji, K. A., Chin, S. C., & Hamid, M. (2012). Potentials of Melastoma malabathricum Linn. flower and fruit extracts as antimicrobial infusions. American Journal of Plant Sciences, 3(8), 1127-1134. doi: 10.4236/ajps.2012.38136.

Park, J. H., Kang, S. N., Shin, D., & Shim, K. S. (2015). Antioxidant enzyme activity and meat quality of meat type ducks fed with dried Oregano (Origanum vulgare L.) powder. Asian-Australasian Journal of Animal Sciences, 28(1), 79-85. doi: 10.5713/ajas.14.0313.

Pastsart, U. (2019). Effect of Melastoma malabathricum supplementation in drinking water on growth performance, carcass and meat quality of broilers. Khon Kaen Agriculture Journal, 47(Suppl. 1), 769-774. (in Thai)

Pastsart, U., De Boever, M., Claeys, E., & De Smet, S. (2013). Effect of muscle and post-mortem rate of pH and temperature fall on antioxidant enzyme activities in beef. Meat science, 93(3), 681–686. doi: 10.1016/j.meatsci.2012.11.008.

Pastsart, U., Nakawiroj, P., Pimpa, O., Rattanawut, J., & Khamseekhiew, B. (2021). Antioxidant capacity and lipid oxidation in meat during cold storage of broilers fed with sweet basil (Ocimum basilicum) leaves. Khon Kaen Agriculture Journal, 49(Suppl. 2), 862-866. (in Thai)

Qwele, K., Hugo, A., Oyedemi, S. O., Moyo, B., Masika, P. J., & Muchenje, V. (2013). Chemical composition, fatty acid content and antioxidant potential of meat from goats supplemented with Moringa (Moringa oleifera) leaves, sunflower cake and grass hay. Meat Science, 93(3), 455–462.

Renerre, M., Dumont, F., & Gatellier, P. (1996). Antioxidant enzyme activities in beef in relation to oxidation of lipid and myoglobin. Meat Science, 43(2), 111–121. doi: 10.1016/0309-1740(96)84583-9.

Sharma, O. P., & Bhat, T. K. (2009). DPPH antioxidant assay revisited. Food chemistry, 113(4), 1202-1205.

Song, F. L., Gan, R. Y., Zhang, Y., Xiao, Q., Kuang, L., & Li, H. B. (2010). Total phenolic contents and antioxidant capacities of selected Chinese medicinal plants. International journal of molecular sciences, 11(6), 2362-2372. doi: 10.3390/ijms11062362.

Susanti, D., Sirat, H. M., Ahmad, F., Ali, R. M., Aimi, N., & Kitajima, M. (2007). Antioxidant and cytotoxic flavonoids from the flowers of Melastoma malabathricum L. Food Chemistry, 103(3), 710-716.

Tarladgis, B. G., Watts, B. M., Younathan, M. T., & Dugan, L. (1960). A distillation method for the quantitative determination of malonaldehyde in rancid foods. Journal of the American Oil Chemists' Society, 37, 44–48.

Wang, L., Guo, H., Liu, X., Jiang, G., Li, C., Li, X., & Li, Y. (2019). Roles of Lentinula edodes as the pork lean meat replacer in production of the sausage. Meat science, 156(1), 44-51. doi: 10.1016/j.meatsci.2019.05.016.

Yao, Y., Sang, W., Zhou, M., & Ren, G. (2010). Phenolic composition and antioxidant activities of 11 celery cultivars. Journal of Food science, 75(1), C9-C13. doi: 10.1111/j.1750-3841.2009.01392.x.

Zakaria, Z. A., Rofiee, M. S., Mohamed, A. M., Teh, L. K., & Salleh, M. Z. (2011). In vitro antiproliferative and antioxidant activities and total phenolic contents of the extracts of Melastoma malabathricum leaves. Journal of Acupuncture and Meridian Studies, 4(4), 248-256. doi: 10.1016/j.jams.2011.09.016.